Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 13958, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228375

RESUMO

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bifidobacteriales/metabolismo , Bifidobacterium/metabolismo , Fezes/microbiologia , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Adulto , Proteínas de Bactérias/genética , Infecções por Bifidobacteriales/microbiologia , Bifidobacterium/classificação , Bifidobacterium/genética , Células Cultivadas , Pré-Escolar , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Humanos , Lactente , Masculino
2.
Biosci Biotechnol Biochem ; 81(10): 2009-2017, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782454

RESUMO

Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Microbioma Gastrointestinal , Anaerobiose , Bactérias/genética , Simulação por Computador , Técnicas de Cultura , DNA Bacteriano/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA