Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharmaceutics ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399299

RESUMO

Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.

2.
Pharmaceutics ; 15(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631338

RESUMO

Endothelial dysfunction is the basis of the physiopathological mechanisms of vascular diseases. In addition to the therapeutic activity of plant extracts, cytotoxicity is significant. This research evaluates the cytotoxicity of three vegetal extracts (Calendulae flos extract-CE, Ginkgo bilobae folium extract-GE, and Sophorae flos extract-SE). In vitro evaluation was performed using an endothelial cell line model (Human Pulmonary Artery Endothelial Cells-HPAEC) when a dose-dependent cytotoxic activity was observed after 72 h. The IC50 values were calculated for all extracts: Calendulae flos extract (IC50 = 91.36 µg/mL), Sophorae flos extract (IC50 = 68.61 µg/mL), and Ginkgo bilobae folium extract (IC50 = 13.08 µg/mL). Therefore, at the level of HPAEC cells, the cytotoxicity of the extracts follows the order GE > SE > CE. The apoptotic mechanism implied in cell death was predicted for several phytocompounds using the PASS algorithm and molecular docking simulations, highlighting potential interactions with caspases-3 and -8. In vivo analysis was performed through brine shrimp lethality assay (BSLA) when lethal, behavioral, and cytological effects were evaluated on Artemia salina larvae. The viability examined after 24 h (assessment of lethal effects) follows the same sequence: CE > SE > GE. In addition, the predicted cell permeability was observed mainly for GE constituents through in silico studies. However, the extracts can be considered nontoxic according to Clarckson's criteria because no BSL% was registered at 1200 µg/mL. The obtained data reveal that all three extracts are safe for human use and suitable for incorporation in further pharmaceutical formulations.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511428

RESUMO

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Assuntos
Lamiaceae , Rosmarinus , Thymus (Planta) , Humanos , Antioxidantes/química , Thymus (Planta)/química , Rosmarinus/química , Lamiaceae/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Polifenóis/química , Fatores de Transcrição de Zíper de Leucina Básica
4.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145799

RESUMO

Since medicinal plants are widely used in treating various diseases, phytoconstituents enrichment strategies are of high interest for plant growers. First of all, we investigated the impact of phytosociological cultivation on polyphenolic content (total flavonoids-TFL, and total polyphenols-TPC) of peppermint (Mentha piperita L.) and lemon balm (Melissa officinalis L.) leaves, using spectrophotometric methods. Secondly, the influence of chemical (NPK) and organic (BIO) fertilization on polyphenolic content and plant material quality was also assessed. Dry extracts were obtained from harvested leaves using hydroethanolic extraction solvents for further qualitative and quantitative assessment of phytoconstituents by FT-ICR MS and UHPLC-MS. Furthermore, the antioxidant activity of leaf extracts was determined in vitro using DPPH, ABTS and FRAP methods. Molecular docking simulations were employed to further evaluate the antioxidant potential of obtained extracts, predicting the interactions of identified phytochemicals with sirtuins. The concentration of polyphenols was higher in the plant material harvested from the phytosociological culture. Moreover, the use of BIO fertilizer led to the biosynthesis of a higher content of polyphenols. Higher amounts of phytochemicals, such as caffeic acid, were determined in extracts obtained from phytosociological crops. The antioxidant activity was dependent on polyphenols concentration, more potent inhibition values being observed for the extracts obtained from the phytosociological batches. Molecular docking studies and MM/PBSA calculations revealed that the obtained extracts have the potential to directly activate sirtuins 1, 5 and 6 through several polyphenolic compounds, such as rosmarinic acid, thus complementing the free radical scavenging activity with the potential stimulation of endogenous antioxidant defense mechanisms. In conclusion, growing medicinal plants in phytosociological cultures treated with biofertilizers can have a positive impact on plant material quality, concentration in active constituents and biological activity.

5.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807632

RESUMO

Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.

6.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443693

RESUMO

The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Ácido Benzoico/síntese química , Ácido Benzoico/toxicidade , Simulação por Computador , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Biofilmes/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Testes de Toxicidade
7.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281235

RESUMO

Multiple sclerosis (MS) is a demyelinating, autoimmune disease that affects a large number of young adults. Novel therapies for MS are needed considering the efficiency and safety limitations of current treatments. In our study, we investigated the effects of venlafaxine (antidepressant, serotonin-norepinephrine reuptake inhibitor), risperidone (atypical antipsychotic) and febuxostat (gout medication, xanthine oxidase inhibitor) in the cuprizone mouse model of acute demyelination, hypothesizing an antagonistic effect on TRPA1 calcium channels. Cuprizone and drugs were administered to C57BL6/J mice for five weeks and locomotor activity, motor performance and cold sensitivity were assessed. Mice brains were harvested for histological staining and assessment of oxidative stress markers. Febuxostat and metabolites of venlafaxine (desvenlafaxine) and risperidone (paliperidone) were tested for TRPA1 antagonistic activity. Following treatment, venlafaxine and risperidone significantly improved motor performance and sensitivity to a cold stimulus. All administered drugs ameliorated the cuprizone-induced deficit of superoxide dismutase activity. Desvenlafaxine and paliperidone showed no activity on TRPA1, while febuxostat exhibited agonistic activity at high concentrations. Our findings indicated that all three drugs offered some protection against the effects of cuprizone-induced demyelination. The agonistic activity of febuxostat can be of potential use for discovering novel TRPA1 ligands.


Assuntos
Febuxostat/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Neurotransmissores/uso terapêutico , Risperidona/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico , Animais , Corpo Caloso/efeitos dos fármacos , Cuprizona , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Febuxostat/farmacologia , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotransmissores/farmacologia , Risperidona/farmacologia , Canal de Cátion TRPA1/efeitos dos fármacos , Cloridrato de Venlafaxina/farmacologia
8.
Int J Mol Sci ; 20(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862032

RESUMO

Anemone nemorosa is part of the Ranunculaceae genus Anemone (order Ranunculales) which comprises more than 150 species. Various parts of the plant have been used for the treatment of numerous medical conditions such as headaches, tertian agues, rheumatic gout, leprosy, lethargy, eye inflammation as well as malignant and corroding ulcers. The Anemone plants have been found to contain various medicinal compounds with anti-cancer, immunomodulatory, anti-inflammatory, anti-oxidant and anti-microbial activities. To date there has been no reported evidence of its use in the treatment of cancer. However, due to the reported abundance of saponins which usually exert anti-cancer activity via cell cycle arrest and the induction of apoptosis, we investigated the mode of cell death induced by an aqueous A. nemorosa extract by using HeLa cervical cancer cells. Cisplatin was used as a positive control. With a 50% inhibitory concentration (IC50) of 20.33 ± 2.480 µg/mL, treatment with A. nemorosa yielded a delay in the early mitosis phase of the cell cycle. Apoptosis was confirmed through fluorescent staining with annexin V-FITC. Apoptosis was more evident with A. nemorosa treatment compared to the positive control after 24 and 48 h. Tetramethylrhodamine ethyl ester staining showed a decrease in mitochondrial membrane potential at 24 and 48 h. The results obtained imply that A. nemorosa may have potential anti-proliferative properties.


Assuntos
Anemone/química , Extratos Vegetais/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Histonas/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Fosforilação , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
9.
Mol Med Rep ; 17(6): 7757-7763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29620235

RESUMO

Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC­MS method, using a retention time (TR)­5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson 's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC­MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans.


Assuntos
Invertebrados/efeitos dos fármacos , Extratos Vegetais/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Animais , Cromatografia Gasosa-Espectrometria de Massas , Concentração Inibidora 50 , Plantas Medicinais/química , Testes de Toxicidade
10.
Rom J Morphol Embryol ; 57(3): 1017-1023, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28002518

RESUMO

Pyrrolizidine alkaloids (PAs) are a class of toxic compounds which are found in plants. Poisoning caused by these toxins is associated with acute and chronic liver damage. Tussilago farfara (coltsfoot), Petasites hybridus (common butterbur), Senecio vernalis (eastern groundsel) and Symphytum officinale (comfrey) are traditional phytotherapic species, which beside the therapeutic bioactive compounds contain PAs. The aim of the paper was to assess the safety of some dry extracts obtained from these species. For the determination of acute toxicity, Organization for Economic Cooperation and Development (OECD) Guideline No. 423 was used. For the determination of repeated dose oral toxicity, Senecionis vernalis herba and Symphyti radix extracts (250 mg÷kg) were administrated, by gavage, for 28 days, and their effects on animal weight, liver and biliary functions, hepatic tissue and oxidative stress were investigated. After the acute toxicity testing, the dry extracts were placed in the GHS Category V (LD50>5000 mg÷kg, p.o.). For the subacute toxicity testing, no death or any signs of toxicity were observed. Also, no significant differences in biochemical parameters were observed between control and treated groups. The observed histopathological lesions were non-specific and were not consistent with the data reported in the literature for PAs exposure. In conclusion, the administration for 28 days, of the tested extracts, in a dose which correspond to a PAs concentration over the limits imposed in some countries, produced no hepatic and biliary toxic effects. Further studies, extended over a longer period of time, are needed in order to determine the safety of plant extracts containing PAs.


Assuntos
Extratos Vegetais/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Administração Oral , Humanos , Extratos Vegetais/química , Alcaloides de Pirrolizidina/química
11.
Oncol Lett ; 10(3): 1323-1332, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622671

RESUMO

The aim of the present study was to determine the anticancer potential of three species belonging to the Fallopia genus (Polygonaceae): Fallopia convolvulus (F. convolvulus, Fallopia dumetorum (F. dumetorum) and Fallopia aubertii (F. aubertii). For this purpose, crude extracts were obtained and characterized for their phenolic and flavonoid total content and examined for their anticancer activity on three tumor cell lines: breast cancer (MCF7), colon carcinoma (Caco-2) and cervical cancer (HeLa) cells. The cytotoxic potential of the three species was assessed by MTT assay, cell cycle analysis and by the evaluation of mitochondrial membrane potential (MMP). The acute toxicity of the extracts was evaluated using one in vitro cell model (Vero cells, an African Green monkey kidney cell line) and two invertebrate in vivo models (Daphnia magna and Artemia salina). The highest total phenolic and flavonoid content was found in the F. aubertii flower extracts. The cytotoxic effects of the extracts from F. aubertii and F. convolvulus on all three cell lines were examined at concentrations ranging from 3 to 300 µg/ml. G2/M cell cycle arrest was induced by all the extracts, and a significant increase in the subG1 cell population was observed. The hydroethanolic extract from the flowers of F. aubertii induced cell apoptosis more rapidly than the other extracts. The MMP indicates the involvement of the mitochondria in the induction of apoptosis. A positive correlation between the total phenolic content of the extracts and the IC50 values against the HeLa cells was also noted. None of the extracts exhibited significantly toxic effects. Considering the antitumor potential of F. aubertii and F. convolvulus, these two species may represent a good source of plant extracts with anticancer properties.

12.
Molecules ; 20(8): 15003-22, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26287153

RESUMO

Anthriscus sylvestris (L.) Hoffm. is a wild herbaceous plant common in most temperate regions. It has been used traditionally to treat headaches, as a tonic, as antitussive, antipyretic, analgesic and diuretic. The plant contains deoxypodophyllotoxin, which is proven to have antitumor and anti-proliferative effects, anti-platelet aggregation, antiviral, anti-inflammatory and insecticidal activity. Deoxypodophyllotoxin is considered to be the plant's most important constituent, because of its pharmacological properties and because it can be converted into epipodophyllotoxin, the main raw material for the semisynthesis of the cytostatic agents etoposide and teniposide. This work summarizes for the first time the results related to the botanical description, distribution and habitat, phytochemical and pharmacological properties and emphasizes the aspects for future biotechnological research to establish its utility in the therapeutic arsenal.


Assuntos
Antineoplásicos/farmacologia , Apiaceae/química , Lignanas/farmacologia , Medicina Tradicional , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA