Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Oncol ; 33(11): 1186-1199, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988656

RESUMO

BACKGROUND: Germline variant evaluation in precision oncology opens new paths toward the identification of patients with genetic tumor risk syndromes and the exploration of therapeutic relevance. Here, we present the results of germline variant analysis and their clinical implications in a precision oncology study for patients with predominantly rare cancers. PATIENTS AND METHODS: Matched tumor and control genome/exome and RNA sequencing was carried out for 1485 patients with rare cancers (79%) and/or young adults (77% younger than 51 years) in the National Center for Tumor Diseases/German Cancer Consortium (NCT/DKTK) Molecularly Aided Stratification for Tumor Eradication Research (MASTER) trial, a German multicenter, prospective, observational precision oncology study. Clinical and therapeutic relevance of prospective pathogenic germline variant (PGV) evaluation was analyzed and compared to other precision oncology studies. RESULTS: Ten percent of patients (n = 157) harbored PGVs in 35 genes associated with autosomal dominant cancer predisposition, whereof up to 75% were unknown before study participation. Another 5% of patients (n = 75) were heterozygous carriers for recessive genetic tumor risk syndromes. Particularly, high PGV yields were found in patients with gastrointestinal stromal tumors (GISTs) (28%, n = 11/40), and more specifically in wild-type GISTs (50%, n = 10/20), leiomyosarcomas (21%, n = 19/89), and hepatopancreaticobiliary cancers (16%, n = 16/97). Forty-five percent of PGVs (n = 100/221) supported treatment recommendations, and its implementation led to a clinical benefit in 40% of patients (n = 10/25). A comparison of different precision oncology studies revealed variable PGV yields and considerable differences in germline variant analysis workflows. We therefore propose a detailed workflow for germline variant evaluation. CONCLUSIONS: Genetic germline testing in patients with rare cancers can identify the very first patient in a hereditary cancer family and can lead to clinical benefit in a broad range of entities. Its routine implementation in precision oncology accompanied by the harmonization of germline variant evaluation workflows will increase clinical benefit and boost research.


Assuntos
Neoplasias , Adulto Jovem , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Estudos Prospectivos , Síndrome , Medicina de Precisão/métodos
2.
J Neurosci ; 19(17): 7426-33, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10460249

RESUMO

Here, we provide the first evidence for functional expression of a human olfactory receptor protein (OR17-40) and show that recombinant olfactory receptors can be functionally expressed in heterologous systems. A mixture of 100 different odorants (Henkel 100) elicited a transient increase in intracellular [Ca(2+)] in human embryonic kidney 293 (HEK293) cells stably or transiently transfected with the plasmid pOR17-40. By subdividing the odorant mixture into progressively smaller groups, we identified a single component that represented the only effective substance: helional. Only the structurally closely related molecule heliotroplyacetone also activated the receptor. Other compounds, including piperonal, safrole, and vanillin, were completely ineffective. Mock-transfected cells and cells transfected with other receptors showed no change in intracellular [Ca(2+)] in response to odor stimulation. We were also able to functionally express OR17-40 in Xenopus laevis oocytes. Coexpression of a "reporter" channel allowed measurement of the response of oocytes injected with the cRNA of the human receptor to the odor mixture Henkel 100. The effective substances were the same (helional, heliotropylacetone) as those identified by functionally expressing the receptor in HEK293 cells and were active at the same, lower micromolar concentration. These findings open the possibility of now characterizing the sensitivity and specificity of many, if not all, of the hundreds of different human olfactory receptors.


Assuntos
Receptores Odorantes/fisiologia , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , DNA Complementar , Feminino , Humanos , Rim , Potenciais da Membrana/efeitos dos fármacos , Modelos Neurológicos , Dados de Sequência Molecular , Odorantes , Oócitos/fisiologia , Estrutura Secundária de Proteína , RNA Complementar/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Transfecção , Xenopus laevis
3.
Chem Senses ; 22(4): 467-76, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9279469

RESUMO

Odorant receptors of zebrafish and C elegans were functionally expressed in vertebrate kidney cells (HEK293) using the eucaryotic expression vector pSMyc. Receptor-encoding cDNA cloned into this vector was expressed as a fusion protein with the N-terminal membrane import sequence of the guinea-pig serotonin receptor followed by a myc tag. Immunocytochemical evidence indicates that this strategy directs a protein with the predicted immunoreactivity and approximate molecular weight to the plasma membrane. Fish food extract (TetraMin) evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids containing cDNA for three fish odorant receptors and converted to stable cell lines. The effect of the extract was concentration dependent and limited to the fraction of the extract < 5 kDa. Pretreating the transfected cells with the PLC inhibitor U73122 reduced the odor-evoked signal. Fish food extract also evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids containing cDNA for single fish odorant receptors. Diacetyl evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids encoding the cDNA of ODR10, an odorant receptor of C. elegans suggested in other work to be specific for diacetyl. These results strongly imply that odorant receptors can be functionally expressed in HEK293 cells using this novel expression protocol.


Assuntos
Caenorhabditis elegans/genética , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Peixe-Zebra/genética , Animais , Sequência de Bases , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Vetores Genéticos , Humanos , Imuno-Histoquímica , Ligantes , Dados de Sequência Molecular , Receptores Odorantes/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais/fisiologia , Transfecção/genética , Transfecção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA