Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hear Res ; 385: 107844, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759235

RESUMO

We examined the sensitivity of the neurons in the mouse inferior colliculus (IC) to the interaural time differences (ITD) conveyed in the sound envelope. Utilizing optogenetic methods, we compared the responses to the ITD in the envelope of identified glutamatergic and GABAergic neurons. More than half of both cell types were sensitive to the envelope ITD, and the ITD curves were aligned at their troughs. Within the physiological ITD range of mice (±50 µs), the ITD curves of both cell types had a higher firing rate when the contralateral envelope preceded the ipsilateral envelope. These results show that the circuitry to process ITD persists in the mouse despite its lack of low-frequency hearing. The sensitivity of IC neurons to ITD is most likely to be shaped by the binaural interaction of excitation and inhibition in the lateral superior olive.


Assuntos
Neurônios GABAérgicos/fisiologia , Audição , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Vias Auditivas/metabolismo , Vias Auditivas/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Colículos Inferiores/metabolismo , Masculino , Camundongos Transgênicos , Inibição Neural , Neurônios/metabolismo , Optogenética , Fatores de Tempo
2.
Sci Rep ; 5: 10383, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25993334

RESUMO

In an ever changing auditory scene, change detection is an ongoing task performed by the auditory brain. Neurons in the midbrain and auditory cortex that exhibit stimulus-specific adaptation (SSA) may contribute to this process. Those neurons adapt to frequent sounds while retaining their excitability to rare sounds. Here, we test whether neurons exhibiting SSA and those without are part of the same networks in the inferior colliculus (IC). We recorded the responses to frequent and rare sounds and then marked the sites of these neurons with a retrograde tracer to correlate the source of projections with the physiological response. SSA neurons were confined to the non-lemniscal subdivisions and exhibited broad receptive fields, while the non-SSA were confined to the central nucleus and displayed narrow receptive fields. SSA neurons receive strong inputs from auditory cortical areas and very poor or even absent projections from the brainstem nuclei. On the contrary, the major sources of inputs to the neurons that lacked SSA were from the brainstem nuclei. These findings demonstrate that auditory cortical inputs are biased in favor of IC synaptic domains that are populated by SSA neurons enabling them to compare top-down signals with incoming sensory information from lower areas.


Assuntos
Estimulação Acústica , Adaptação Fisiológica , Córtex Auditivo/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Animais , Córtex Auditivo/patologia , Encéfalo/patologia , Mapeamento Encefálico , Fenômenos Eletrofisiológicos , Feminino , Imuno-Histoquímica , Fotomicrografia , Ratos , Ratos Long-Evans
3.
J Comp Neurol ; 523(15): 2277-96, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25879870

RESUMO

Large GABAergic (LG) neurons form a distinct cell type in the inferior colliculus (IC), identified by the presence of dense VGLUT2-containing axosomatic terminals. Although some of the axosomatic terminals originate from local and commissural IC neurons, it has been unclear whether LG neurons also receive axosomatic inputs from the lower auditory brainstem nuclei, i.e., cochlear nuclei (CN), superior olivary complex (SOC), and nuclei of the lateral lemniscus (NLL). In this study we injected recombinant viral tracers that force infected cells to express GFP in a Golgi-like manner into the lower auditory brainstem nuclei to determine whether these nuclei directly innervate LG cell somata. Labeled axons from CN, SOC, and NLL terminated as excitatory axosomatic endings, identified by colabeling of GFP and VGLUT2, on single LG neurons in the IC. Each excitatory axon made only a few axosomatic contacts on each LG neuron. Inputs to a single LG cell are unlikely to be from a single brainstem nucleus, since lesions of individual nuclei failed to eliminate most VGLUT2-positive terminals on the LG neurons. The estimated number of inputs on a single LG cell body was almost proportional to the surface area of the cell body. Double injections of different viruses into IC and a brainstem nucleus showed that LG neurons received inputs from both. These results demonstrated that both ascending and intrinsic sources converge on the LG somata to control inhibitory tectothalamic projections.


Assuntos
Neurônios GABAérgicos/citologia , Colículos Inferiores/citologia , Animais , Axônios/metabolismo , Tamanho Celular , Feminino , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Colículos Inferiores/metabolismo , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Fotomicrografia , Ratos Long-Evans , Sinapses/metabolismo , Teto do Mesencéfalo/citologia , Teto do Mesencéfalo/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
4.
J Neurosci ; 32(45): 15759-68, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136415

RESUMO

A conserved feature of sound processing across species is the presence of multiple auditory cortical fields with topographically organized responses to sound frequency. Current organizational schemes propose that the ventral division of the medial geniculate body (MGBv) is a single functionally homogenous structure that provides the primary source of input to all neighboring frequency-organized cortical fields. These schemes fail to account for the contribution of MGBv to functional diversity between frequency-organized cortical fields. Here, we report response property differences for two auditory fields in the rat, and find they have nonoverlapping sources of thalamic input from the MGBv that are distinguished by the gene expression for type 1 vesicular glutamate transporter. These data challenge widely accepted organizational schemes and demonstrate a genetic plurality in the ascending glutamatergic pathways to frequency-organized auditory cortex.


Assuntos
Córtex Auditivo/metabolismo , Vias Auditivas/metabolismo , Percepção Auditiva/fisiologia , Ácido Glutâmico/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Estimulação Acústica , Animais , Potenciais Evocados Auditivos/fisiologia , Expressão Gênica , Masculino , Neurônios/metabolismo , Ratos , Tálamo/metabolismo
5.
J Neurosci ; 30(40): 13396-408, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926666

RESUMO

Distinct pathways carry monaural and binaural information from the lower auditory brainstem to the central nucleus of the inferior colliculus (ICC). Previous anatomical and physiological studies suggest that differential ascending inputs to regions of the ICC create functionally distinct zones. Here, we provide direct evidence of this relationship by combining recordings of single unit responses to sound in the ICC with focal, iontophoretic injections of the retrograde tracer Fluoro-Gold at the physiologically characterized sites. Three main patterns of anatomical inputs were observed. One pattern was identified by inputs from the cochlear nucleus and ventral nucleus of the lateral lemniscus in isolation, and these injection sites were correlated with monaural responses. The second pattern had inputs only from the ipsilateral medial and lateral superior olive, and these sites were correlated with interaural time difference (ITD)-sensitive responses to low frequency (<500 Hz). A third pattern had inputs from a variety of olivary and lemniscal sources, notably the contralateral lateral superior olive and dorsal nucleus of the lateral lemniscus. These were correlated with high-frequency ITD sensitivity to complex acoustic stimuli. These data support the notion of anatomical regions formed by specific patterns of anatomical inputs to the ICC. Such synaptic domains may represent functional zones in ICC.


Assuntos
Percepção Auditiva/fisiologia , Transporte Axonal/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica/métodos , Vias Aferentes/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Gatos , Núcleo Coclear/citologia , Núcleo Coclear/fisiologia , Lateralidade Funcional/fisiologia , Colículos Inferiores/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico/métodos , Percepção da Altura Sonora/fisiologia , Análise de Componente Principal , Localização de Som/fisiologia , Transmissão Sináptica/fisiologia
6.
J Neurosci ; 28(18): 4767-76, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18448653

RESUMO

Audible frequencies of sound are encoded in a continuous manner along the length of the cochlea, and frequency is transmitted to the brain as a representation of place on the basilar membrane. The resulting tonotopic map has been assumed to be a continuous smooth progression from low to high frequency throughout the central auditory system. Here, physiological and anatomical data show that best frequency is represented in a discontinuous manner in the inferior colliculus, the major auditory structure of the midbrain. Multiunit maps demonstrate a distinct stepwise organization in the order of best frequency progression. Furthermore, independent data from single neurons show that best frequencies at octave intervals of approximately one-third are more prevalent than others. These data suggest that, in the inferior colliculus, there is a defined space of tissue devoted to a given frequency, and input within this frequency band may be pooled for higher-level processing.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Colículos Inferiores/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Biotina/análogos & derivados , Dextranos/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Long-Evans
7.
Nat Neurosci ; 8(10): 1335-42, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16136041

RESUMO

Sound localization by auditory brainstem nuclei relies on the detection of microsecond interaural differences in action potentials that encode sound volume and timing. Neurons in these nuclei express high amounts of the Kv3.1 potassium channel, which allows them to fire at high frequencies with short-duration action potentials. Using computational modeling, we show that high amounts of Kv3.1 current decrease the timing accuracy of action potentials but enable neurons to follow high-frequency stimuli. The Kv3.1b channel is regulated by protein kinase C (PKC), which decreases current amplitude. Here we show that in a quiet environment, Kv3.1b is basally phosphorylated in rat brainstem neurons but is rapidly dephosphorylated in response to high-frequency auditory or synaptic stimulation. Dephosphorylation of the channel produced an increase in Kv3.1 current, facilitating high-frequency spiking. Our results indicate that the intrinsic electrical properties of auditory neurons are rapidly modified to adjust to the ambient acoustic environment.


Assuntos
Tronco Encefálico/citologia , Neurônios/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Recém-Nascidos , Células CHO/efeitos dos fármacos , Células CHO/metabolismo , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Imuno-Histoquímica/métodos , Técnicas In Vitro , Indóis/farmacologia , Maleimidas/farmacologia , Técnicas de Patch-Clamp/métodos , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
8.
J Neurosci ; 23(19): 7438-49, 2003 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12917380

RESUMO

Neurons in the medial superior olive encode interaural temporal disparity, and their receptive fields indicate the location of a sound source in the azimuthal plane. It is often assumed that the projections of these neurons transmit the receptive field information about azimuth from point to point, much like the projections of the retina to the brain transmit the position of a visual stimulus. Yet this assumption has never been verified. Here, we use physiological and anatomical methods to examine the projections of the medial superior olive to the inferior colliculus for evidence of a spatial topography that would support transmission of azimuthal receptive fields. The results show that this projection does not follow a simple point-to-point topographical map of receptive field location. Thus, the representation of sound location along the azimuth in the inferior colliculus most likely relies on a complex, nonlinear map.


Assuntos
Percepção Auditiva , Colículos Inferiores/citologia , Núcleo Olivar/citologia , Estimulação Acústica , Animais , Vias Auditivas , Transporte Axonal , Axônios/ultraestrutura , Mapeamento Encefálico , Gatos , Dextranos/administração & dosagem , Colículos Inferiores/fisiologia , Cinética , Neurônios/metabolismo , Núcleo Olivar/fisiologia , Terminações Pré-Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA