Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 66(12): e2101133, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426970

RESUMO

SCOPE: Sea buckthorn (Hippophaes rhamnoides) is capable of ameliorating disturbed glucose metabolism in animal models and human subjects. Here, the effect of sea buckthorn oil as well as of extracts of fruits, leaves, and press cake on postprandial glucose metabolism is systematically investigated. METHODS AND RESULTS: Sea buckthorn did neither exert decisive effects in an in vitro model of intestinal glucose absorption nor did it alter insulin secretion. However, sea buckthorn stimulates GLUT4 translocation to the plasma membrane comparable to insulin, indicative of increased glucose clearance from the circulation. Isorhamnetin is identified in all sea buckthorn samples investigated and is biologically active in triggering GLUT4 cell surface localization. Consistently, sea buckthorn products lower circulating glucose by ≈10% in a chick embryo model. Moreover, sea buckthorn products fully revert hyperglycemia in the nematode Caenorhabditis elegans while they are ineffective in Drosophila melanogaster under euglycemic conditions. CONCLUSION: These data indicate that edible sea buckthorn products as well as by-products are promising resources for hypoglycemic nutrient supplements that increase cellular glucose clearance into target tissues.


Assuntos
Hippophae , Animais , Embrião de Galinha , Drosophila melanogaster , Frutas , Glucose , Humanos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas
2.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451906

RESUMO

Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 ß cells, an insulin-Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.

3.
Mol Nutr Food Res ; 62(11): e1701012, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29688623

RESUMO

SCOPE: Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases. METHODS AND RESULTS: This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS. CONCLUSION: The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.


Assuntos
Glucose/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Psidium/química , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Feminino , Frutas/química , Glucose/farmacocinética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/análise , Período Pós-Prandial , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA