Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538664

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Assuntos
Ubiquitina , Dedos de Zinco , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo
2.
J Mol Model ; 27(8): 231, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312718

RESUMO

The Retinoid X Receptor (RXR) is an attractive target in the treatment of colon cancer. Different therapeutic binders with high potency have been used to specifically target RXR. Among these compounds is a novel analogue of berberine, B12. We provided structural and molecular insights into the therapeutic activity properties of B12 relative to its parent compound, berberine, using force field estimations and thermodynamic calculations. Upon binding of B12 to RXR, the high instability elicited by RXR was markedly reduced; similar observation was seen in the berberine-bound RXR. However, our analysis revealed that B12 could have a more stabilizing effect on RXR when compared to berberine. Interestingly, the mechanistic behaviour of B12 in the active site of RXR opposed its impact on RXR protein. This disparity could be due to the bond formation and breaking elicited between B12/berberine and the active site residues. We observed that B12 and berberine could induce a disparate conformational change in regions Gly250-Asp258 located on the His-RXRα/LBD domain. Comparatively, the high agonistic and activation potential reported for B12 compared to berberine might be due to its superior binding affinity as evidenced in the thermodynamic estimations. The total affinity for B12 (-25.76 kcal/mol) was contributed by electrostatic interactions from Glu243 and Glu239. Also, Arg371, which plays a crucial role in the activity of RXR, formed a strong hydrogen bond with B12; however, a weak interaction was elicited between Arg371 and berberine. Taken together, our study has shown the RXRα activating potential of B12, and findings from this study could provide a framework in the future design of RXRα binders specifically tailored in the selective treatment of colon cancer.


Assuntos
Berberina/química , Neoplasias do Colo/tratamento farmacológico , Ligação de Hidrogênio/efeitos dos fármacos , Receptores X de Retinoides/genética , Berberina/análogos & derivados , Berberina/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Neoplasias do Colo/genética , Humanos , Terapia de Alvo Molecular , Conformação Proteica/efeitos dos fármacos , Receptores X de Retinoides/antagonistas & inibidores , Termodinâmica
3.
J Mol Model ; 27(2): 35, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423140

RESUMO

Compound P131 has been established to inhibit Cryptosporidium parvum's inosine monophosphate dehydrogenase (CpIMPDH). Its inhibitory activity supersedes that of paromomycin, which is extensively used in treating cryptosporidiosis. Through the per-residue energy decomposition approach, crucial moieties of P131 were identified and subsequently adopted to create a pharmacophore model for virtual screening in the ZINC database. This search generated eight ADMET-compliant hits that were examined thoroughly to fit into the active site of CpIMPDH via molecular docking. Three compounds ZINC46542062, ZINC58646829, and ZINC89780094, with favorable docking scores of - 8.3 kcal/mol, - 8.2 kcal/mol, and - 7.5 kcal/mol, were selected. The potential inhibitory mechanism of these compounds was probed using molecular dynamics simulation and Molecular Mechanics Generalized Poisson Boltzmann Surface Area (MM/PBSA) analyses. Results revealed that one of the hits (ZINC46542062) exhibited a lower binding free energy of - 39.52 kcal/mol than P131, which had - 34.6 kcal/mol. Conformational perturbation induced by the binding of the identified hits to CpIMPDH was similar to P131, suggesting a similarity in inhibitory mechanisms. Also, in silico investigation of the properties of the hit compounds implied superior physicochemical properties with regards to their synthetic accessibility, lipophilicity, and number of hydrogen bond donors and acceptors in comparison with P131. ZINC46542062 was identified as a promising hit compound with the highest binding affinity to the target protein and favorable physicochemical and pharmacokinetic properties relative to P131. The identified compounds can serve as a basis for conducting further experimental investigations toward the development of anticryptosporidials, which can overcome the challenges of existing therapeutic options. Graphical abstract P131 and the identified compounds docked in the NAD+ binding site of Cryptosporidium parvum IMPDH.


Assuntos
Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Termodinâmica
4.
RSC Adv ; 11(14): 8003-8018, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423339

RESUMO

Recent studies have shown that inhibition of the hSIRT2 enzyme provides favorable effects in neurodegenerative diseases such as Alzheimer's disease. Prenylated xanthone phytochemicals including α-mangostin, ß-mangostin and γ-mangostin obtained from Garcinia mangostana, a well-established tropical plant, have been shown experimentally to inhibit sirtuin enzymatic activity. However, the molecular mechanism of this sirtuin inhibition has not been reported. Using comprehensive integrated computational techniques, we provide molecular and timewise dynamical insights into the structural alterations capable of facilitating therapeutically beneficial effects of these phytochemicals at the catalytic core of the hSIRT2 enzyme. Findings revealed the enhanced conformational stability and compactness of the hSIRT2 catalytic core upon binding of γ-mangostin relative to the apoenzyme and better than α-mangostin and ß-mangostin. Although thermodynamic calculations revealed favorable binding of all the phytochemicals to the hSIRT2 enzyme, the presence of only hydroxy functional groups on γ-mangostin facilitated the occurrence of additional hydrogen bonds involving Pro115, Phe119, Asn168 and His187 which are absent in α-mangostin- and ß-mangostin-bound systems. Per-residue energy contributions showed that van der Waals and more importantly electrostatic interactions are involved in catalytic core stability with Phe96, Tyr104 and Phe235 notably contributing π-π stacking, π-π T shaped and π-sigma interactions. Cumulatively, our study revealed the structural alterations leading to inhibition of hSIRT2 catalysis and findings from this study could be significantly important for the future design and development of sirtuin inhibitors in the management of Alzheimer's disease.

5.
Curr Pharm Biotechnol ; 21(14): 1551-1566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598251

RESUMO

BACKGROUND: Neonatal Encephalopathy (NE) is a mitochondrial ATP synthase (mATPase) disease, which results in the death of infants. The case presented here is reportedly caused by complex V deficiency as a result of mutation of Arginine to Cysteine at residue 329 in the mATPase. A recent breakthrough was the discovery of J147, which targets mATPase in the treatment of Alzheimer's disease. Based on the concepts of computational target-based drug design, this study investigated the possibility of employing J147 as a viable candidate in the treatment of NE. OBJECTIVE/METHODS: The structural dynamic implications of this drug on the mutated enzyme are yet to be elucidated. Hence, integrative molecular dynamics simulations and thermodynamic calculations were employed to investigate the activity of J147 on the mutated enzyme in comparison to its already established inhibitory activity on the wild-type enzyme. RESULTS: A correlated structural trend occurred between the wild-type and mutant systems whereby all the systems exhibited an overall conformational transition. Equal observations in favorable free binding energies further substantiated uniformity in the mobility, and residual fluctuation of the wild-type and mutant systems. The similarity in the binding landscape suggests that J147 could as well modulate mutant mATPase activity in addition to causing structural modifications in the wild-type enzyme. CONCLUSION: Findings suggest that J147 can stabilize the mutant protein and restore it to a similar structural state as the wild-type which depicts functionality. These details could be employed in drug design for potential drug resistance cases due to mATPase mutations that may present in the future.


Assuntos
Encefalopatias/tratamento farmacológico , Curcumina/análogos & derivados , Desenho de Fármacos , Reposicionamento de Medicamentos , Doenças Genéticas Inatas/tratamento farmacológico , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Regulação Alostérica , Encefalopatias/enzimologia , Encefalopatias/genética , Biologia Computacional , Simulação por Computador , Curcumina/farmacologia , Doenças Genéticas Inatas/enzimologia , Humanos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Simulação de Dinâmica Molecular , Mutação
6.
J Cell Biochem ; 120(9): 16108-16119, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31125144

RESUMO

Therapeutic targeting of the adenosine triphosphate (ATP) machinery of Mycobacterium tuberculosis (Mtb) has recently presented a potent and alternative measure to halt the pathogenesis of tuberculosis. This has been potentiated by the development of bedaquiline (BDQ), a novel small molecule inhibitor that selectively inhibits mycobacterial F1 Fo -ATP synthase by targeting its rotor c-ring, resulting in the disruption of ATP synthesis and consequential cell death. Although the structural resolution of the mycobacterial C9 ring in co`mplex with BDQ provided the first-hand detail of BDQ interaction at the c-ring region of the ATP synthase, there still remains a need to obtain essential and dynamic insights into the mechanistic activity of this drug molecule towards crucial survival machinery of Mtb. As such, for the first time, we report an atomistic model to describe the structural dynamics that explicate the experimentally reported antagonistic features of BDQ in halting ion shuttling by the mycobacterial c-ring, using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Surface Area methods. Results showed that BDQ exhibited a considerably high ΔG while it specifically maintained high-affinity interactions with Glu65B and Asp32B , blocking their crucial roles in proton binding and shuttling, which is required for ATP synthesis. Moreover, the bulky nature of BDQ induced a rigid and compact conformation of the rotor c-ring, which impedes the essential rotatory motion that drives ion exchange and shuttling. In addition, the binding affinity of a BDQ molecule was considerably increased by the complementary binding of another BDQ molecule, which indicates that an increase in BDQ molecule enhances inhibitory potency against Mtb ATP synthase. Taken together, findings provide atomistic perspectives into the inhibitory mechanisms of BDQ coupled with insights that could enhance the structure-based design of novel ATP synthase inhibitors towards the treatment of tuberculosis.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Sinergismo Farmacológico , Modelos Moleculares , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos
7.
Chem Biodivers ; 16(6): e1900085, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30990952

RESUMO

The discovery of J147 represented a significant milestone in the treatment of age-related disorders, which was further augmented by the recent identification of mitochondrial ATP synthase as the therapeutic target. However, the underlying molecular events associated with the modulatory activity of J147 have remained unresolved till date. Herein, we present, for the first time, a dynamical approach to investigate the allosteric regulation of mATP synthase by J147, using a reliable human αÎ³ß protein model. The highlight of our findings is the existence of the J147-bound protein in distinct structural associations at different MD simulation periods coupled with concurrent open↔close transitions of the ß catalytic and α allosteric (ATP5A) sites as defined by Cα distances (d), TriCα (Θ) and dihedral (φ) angular parameters. Firstly, there was an initial pairing of the αγ subunits away from the ß subunit followed by the formation of the 'non-catalytic' αß pair at a distance from the γ subunit. Interestingly, J147-induced structural arrangements were accompanied by the systematic transition of the ß catalytic site from a closed to an open state, while there was a concurrent transition of the allosteric site from an open αE conformation to a closed state. Consequentially, J147 reduced the structural activity of the whole αÎ³ß complex, while the unbound system exhibited high atomistic deviations and structural flexibility. Furthermore, J147 exhibited favorable binding at the allosteric site of mATP synthase with considerable electrostatic energy contributions from Gln215, Gly217, Thr219, Asp312, Asp313, Glu371 and Arg406. These findings provide details on the possible effects of J147 on mitochondrial bioenergetics, which could facilitate the structure-based design of novel small-molecule modulators of mATP synthase in the management of Alzheimer's disease and other neurodegenerative disorders.


Assuntos
Curcumina/análogos & derivados , Hidrazinas/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Regulação Alostérica , Doença de Alzheimer/tratamento farmacológico , Sítios de Ligação , Domínio Catalítico , Curcumina/farmacologia , Humanos , Hidrazinas/metabolismo , Hidrazinas/uso terapêutico , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , Simulação de Acoplamento Molecular , Análise de Componente Principal , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA