Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139780

RESUMO

Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 µL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW-1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.

2.
Front Immunol ; 13: 968348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990638

RESUMO

Spring viremia of carp virus (SVCV) can cause high mortality of fish. The aim of this study was to investigate the effects of Lactobacillus rhamnosus GCC-3 exopolysaccharides (GCC-3 EPS) on zebrafish (Danio rerio) infected with SVCV and elucidate the underlying mechanisms. Zebrafish were fed with a control diet or diet supplemented with 0.5% and 1% of GCC-3 EPS for 2 weeks. The results showed that supplementation of GCC-3 EPS significantly improved the survival rate of zebrafish compared with the control group. In addition, dietary 0.5% and 1% GCC-3 EPS significantly up-regulated the expression of genes related to type I interferon (IFN) antiviral immunity. Consistent with in vivo results, GCC-3 EPS significantly inhibited SVCV replication in zebrafish embryonic fibroblast (ZF4) cells while significantly increased the expression of type I IFN signaling pathway related genes. Furthermore, knocking down TANK-binding kinase 1 significantly blocked the antiviral effect of GCC-3 EPS. Dietary GCC-3 EPS improved gut microbiota, and the culture supernatant of GCC-3 EPS-associated microbiota significantly inhibited SVCV replication in ZF4 cells compared with the control-microbiota counterpart. In conclusion, our results indicate that dietary GCC-3 EPS can improve the resistance of zebrafish against SVCV infection, and the mechanism may involve enhanced type I interferon signaling.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Lacticaseibacillus rhamnosus , Infecções por Rhabdoviridae , Animais , Antivirais/uso terapêutico , Suplementos Nutricionais , Interferon Tipo I/uso terapêutico , Rhabdoviridae , Infecções por Rhabdoviridae/veterinária , Viremia , Peixe-Zebra
3.
Front Nutr ; 9: 870343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571918

RESUMO

Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.

4.
Mar Biotechnol (NY) ; 23(4): 653-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417678

RESUMO

A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.


Assuntos
Antioxidantes/metabolismo , Salmo salar/metabolismo , Animais , Dieta/veterinária , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/fisiologia , Piloro/metabolismo , Salmo salar/genética , Transcriptoma , Xantofilas/metabolismo
5.
Front Nutr ; 8: 797510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145984

RESUMO

With the widespread use of high-fat diets (HFDs) in aquaculture, fatty livers are frequently observed in many fish species. The aim of this study was to investigate if docosahexaenoic acid (DHA) could be used to reduce the fatty liver in zebrafish generated by a 16% soybean oil-HFD over 2 weeks of feeding. The DHA was added to iso-lipidic HFD at 0.5, 1.0, and 2.0% of diet. Supplementation of DHA reduced growth and feed efficiency in a dose dependent manner being lowest in the HFDHA2.0 group. Hepatic triglyceride (TG) in zebrafish fed 0.5% DHA-supplemented HFD (HFDHA0.5) was significantly lower than in the HFD control. Transcriptional analyses of hepatic genes showed that lipid synthesis was reduced, while fatty acid ß-oxidation was increased in the HFDHA0.5 group. Furthermore, the expression of Cyclin D1 in liver of zebrafish fed HFDHA0.5 was significantly reduced compared to that in fish fed HFD. In zebrafish liver cells, Cyclin D1 knockdown and blocking of Cyclin D1-CDK4 signal led to inhibited lipid biosynthesis and elevated lipid ß-oxidation. Besides, DHA-supplemented diet resulted in a rich of Proteobacteria and Actinobacteriota in gut microbiota, which promoted lipid ß-oxidation but did not alter the expression of Cyclin D1 in germ-free zebrafish model. In conclusion, DHA not only inhibits hepatic lipid synthesis and promotes lipid ß-oxidation via Cyclin D1 inhibition, but also facilitates lipid ß-oxidation via gut microbiota. This study reveals the lipid-lowering effects of DHA and highlights the importance of fatty acid composition when formulating fish HFD.

6.
Biol Bull ; 237(2): 90-110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31714858

RESUMO

Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the ß-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.


Assuntos
Copépodes , Diapausa , Petróleo , Animais , Regiões Árticas , Ecossistema , Metabolismo dos Lipídeos
7.
PLoS One ; 12(4): e0175415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403232

RESUMO

New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.


Assuntos
Ração Animal , Brassicaceae/química , Mucosa Intestinal/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Salmo salar/crescimento & desenvolvimento , Transcriptoma , Animais , Brassicaceae/genética , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Óleos de Peixe/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Pesqueiros , Células Caliciformes/citologia , Intestinos/citologia , Metabolismo dos Lipídeos , Plantas Geneticamente Modificadas/genética , Salmo salar/metabolismo
8.
Fish Physiol Biochem ; 42(1): 137-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26349454

RESUMO

The dietary requirement of phospholipid (PL) of fish larvae has been suggested to originate in an inefficient ability for de novo biosynthesis of PL based on dietary triacylglycerol (TAG). The main objective of the present study was to investigate whether cod larvae could synthesis PL from sn-2-monoacylglycerol (2-MAG) and glycerol precursors. A tube feeding method was used to deliver equal molar aliquots of 2-oleoyl-[1,2,3-(3)H]glycerol and [U-(14)C] glycerol together with bovine serum albumin (BSA) bound 16:0 (palmitic acid) and 22:6n-3 (docosahexaenoic acid, DHA), with or without choline chloride to the foregut of anesthetized cod larvae and thereafter monitoring the metabolism of these components in the larvae through 4 h following injection. Our results showed that both 2-MAG and glycerol precursors contributed to the de novo synthesis of phosphatidylcholine (PC) and the 2-MAG pathway predominated over the G-3-P (glycerol-3-phosphate) pathway in the synthesis of TAG and PC. The molecular ratio of PC/TAG obtained from the 2-MAG and the G-3-P pathways was 0.44-0.74 and 1.02-2.06 within the first hour of tube feeding, suggesting they might have comparable biosynthesis ability of PC and TAG under the conditions of the present study. Furthermore, supplementation of choline chloride significantly increased PC/TAG ratio (p < 0.05) for both pathways. However, further studies are needed to quantify the enzyme activity involved in the CDP-choline (cytidine diphosphate choline) pathway, and the function of choline either in simulating PC synthesis or TAG catabolism or both needs further investigation.


Assuntos
Glicerol/análogos & derivados , Glicerol/farmacologia , Larva/efeitos dos fármacos , Fosfolipídeos/biossíntese , Animais , Colina/farmacologia , Gadus morhua/metabolismo , Larva/metabolismo , Soroalbumina Bovina/farmacologia
9.
Br J Nutr ; 103(6): 851-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19943982

RESUMO

A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined pre- (0 h) and post- (1 h) acute stress for blood parameters and intestinal bioactive lipidic mediators of inflammation (prostaglandins). Plasma cortisol responses were greatest in the FMFO group, while 80 % PP and 70 % VO fish exhibited increased plasma chloride concentrations. The n-3:n-6 PUFA ratio in intestinal glycerophospholipids from 70 % VO groups significantly decreased in both proximal and distal regions due to elevated levels of 18 : 2n-6 and the elongation/desaturation products 20 : 2n-6 and 20 : 3n-6. Increases in n-6 PUFA were not concomitant with increased AA, although the AA:EPA ratio did vary significantly. The 40 % PP and 70 % VO diet produced the highest intestinal AA:EPA ratio proximally, which coincided with a trend in elevated levels of PGF2alpha, PGE2 and 6-keto-PGF1alpha in response to stress. PGE2 predominated over PGF2alpha and 6-keto-PGF1alpha (stable metabolite of PGI2) with comparable concentrations in both intestinal regions. Cyclo-oxygenase-2 (COX-2) mRNA expression was an order of magnitude higher in distal intestine, compared with proximal, and was significantly up-regulated following stress. Furthermore, the 80 % PP and 70 % VO diet significantly amplified proximal COX-2 induction post-stress. Results demonstrate that high replacements with plant-derived dietary ingredients can enhance COX-2 induction and synthesis of pro-inflammatory eicosanoids in the intestine of salmon in response to acute physiological stress.


Assuntos
Ácido Araquidônico/análise , Intestinos/química , Óleos de Plantas/administração & dosagem , Proteínas de Plantas/administração & dosagem , Salmo salar/metabolismo , Estresse Fisiológico , Animais , Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Dieta , Ácido Eicosapentaenoico/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Óleos de Peixe/administração & dosagem , Produtos Pesqueiros , Hidrocortisona/sangue , Fosfolipídeos/química , Prostaglandinas/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-19166958

RESUMO

Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.


Assuntos
Digestão/efeitos dos fármacos , Ácidos Graxos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Ração Animal , Animais , Digestão/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA