Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373340

RESUMO

Diabetes is a chronic fast-growing metabolic disorder that is characterized by high blood glucose levels. Tagetes minuta L. has been used as a traditional remedy for various illnesses for many years, and, furthermore, its oil is used in the perfume and flavor industries. T. minuta contains various metabolites, such as flavonoids, thiophenes, terpenes, sterols, and phenolics, with varied bioactivities. Flavonoids can inhibit carbohydrate-digesting enzymes, such as alpha-amylase, which is a convenient dietary strategy for controlling hyperglycemia. In the current investigation, the isolated flavonoids quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside), quercetagetin-7-O-ß-D-glucopyranoside, quercetagetin-6-O-ß-D-glucopyranoside, minutaside A, patuletin-7-O-ß-D-glucopyranoside, quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside, tagenols A and B, quercetagetin-3,7-dimethoxy-6-O-ß-D-glucopyranoside, patuletin, quercetin-3,6-dimethyl ether, and quercetin-3-methyl ether from T. minuta were assessed for their alpha-amylase inhibition (AAI) efficacy using an in vitro assay, as well as molecular docking, dynamics simulation, and ADMET analyses. Our findings show that quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside) (1), quercetagetin-7-O-ß-D-glucopyranoside (2), quercetagetin-6-O-ß-D-glucopyranoside (3), minutaside A (4), patuletin-7-O-ß-D-glucopyranoside (5), and quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside (6) had a notable AAI capacity (IC50s ranged from 7.8 to 10.1 µM) compared to acarbose (IC50 7.1 µM). Furthermore, these compounds with the highest binding affinity among the tested flavonoids revealed high docking scores for AA (ranging from -12.171 to 13.882 kcal/mol) compared to that of acarbose (-14.668 kcal/mol). In MDS, these compounds were observed to show maximum stability and the greatest binding free energy, suggesting that they may contend with native ligands. In addition, the ADMET analysis showed that these active compounds had a broad span of drug-like, pharmacokinetic, and physicochemical features and did not possess any considerable undesired effects. The current results suggest the potential of these metabolites as AAI candidates. However, further in vivo and mechanistic studies are warranted to specify the efficacy of these metabolites.


Assuntos
Flavonoides , Tagetes , Flavonoides/química , Tagetes/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Amilases , Acarbose , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Int J Pharm ; 639: 122966, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37084835

RESUMO

Valsartan (VST) is a poorly soluble antihypertensive drug characterized by its limited dissolution rate and low bioavailability. This study aims to improve VST solubility and dissolution rate via developing liquisolid tablets (LSTs) containing a self-nanoemulsifying drug delivery system (SNEDDS), which is expected to enhance VST bioavailability. This aim was achieved via two designs of experiment. The first was the simplex-lattice design to optimize VST-loaded-SNEDDS using sesame oil, Tween 80, and polyethylene glycol 400. The second was the 32-3-level factorial design to optimize the liquisolid system using the SNEDDS-loaded VST and Neusilin®US2 as a carrier and fumed silica as a coating material. Different excipient ratios (X1) and varioussuper-disintegrants (X2) were also used in developing the optimized VST-LSTs. Thein vitrodissolution of VST from LSTs was compared with the marketed product (Diovan®). Non-compartmental analysis of plasma data after extravascular input with the linear trapezoidal method was used to calculate thepharmacokinetic parameters of the optimized VST-LSTs compared with the marketed tablet in male Wistar rats. The optimized SNEDDS compromised 24.9% sesame oil, 33.3% surfactant, and 41.8% cosurfactant, giving 173.9 nm size and 63.9 mg/ml loading capacity. Also, the SNEDDS-loaded VST tablet revealed good quality attributes with the release of 75% of its content in 5 min and 100% within 15 min. On the other hand, the marketed product took 1 h for the entire drug to be released.Moreover, the maximum plasma concentration (Cmax) of the optimizedVST-LSTwas6585.33 ng/ml within 1 h (Tmax), compared to 2884.67 ng/ml within 2 h of the marketed tablet.The relative bioavailability of the SNEDDS-loaded VST tablet was 213.7% compared to that of the marketed tablet, indicating that this formulation approach could be applied for increasing solubility, dissolution behavior in GIT, and bioavailability of poorly water-soluble drugs.


Assuntos
Nanopartículas , Óleo de Gergelim , Ratos , Animais , Masculino , Valsartana , Disponibilidade Biológica , Ratos Wistar , Emulsões , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Solubilidade , Comprimidos
3.
Sci Rep ; 10(1): 20277, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219275

RESUMO

Sickle cell disease (SCD) results from a hemoglobin (Hb) mutation ßGlu6 → ßVal6 that changes normal Hb (HbA) into sickle Hb (HbS). Under hypoxia, HbS polymerizes into rigid fibers, causing red blood cells (RBCs) to sickle; leading to numerous adverse pathological effects. The RBC sickling is made worse by the low oxygen (O2) affinity of HbS, due to elevated intra-RBC concentrations of the natural Hb effector, 2,3-diphosphoglycerate. This has prompted the development of Hb modifiers, such as aromatic aldehydes, with the intent of increasing Hb affinity for O2 with subsequent prevention of RBC sickling. One such molecule, Voxelotor was recently approved by U.S. FDA to treat SCD. Here we report results of a novel aromatic aldehyde, VZHE-039, that mimics both the O2-dependent and O2-independent antisickling properties of fetal hemoglobin. The latter mechanism of action-as elucidated through crystallographic and biological studies-is likely due to disruption of key intermolecular contacts necessary for stable HbS polymer formation. This dual antisickling mechanism, in addition to VZHE-039 metabolic stability, has translated into significantly enhanced and sustained pharmacologic activities. Finally, VZHE-039 showed no significant inhibition of several CYPs, demonstrated efficient RBC partitioning and high membrane permeability, and is not an efflux transporter (P-gp) substrate.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/farmacologia , Eritrócitos Anormais/efeitos dos fármacos , Hemoglobina Falciforme/metabolismo , Multimerização Proteica/efeitos dos fármacos , Adulto , Anemia Falciforme/sangue , Antidrepanocíticos/uso terapêutico , Células CACO-2 , Hipóxia Celular , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Eritrócitos Anormais/metabolismo , Hemoglobina Falciforme/genética , Humanos , Modelos Moleculares , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA