Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 130(1): 106-113, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32253091

RESUMO

Monoclonal antibodies (mAbs) are active pharmaceutical ingredients in antibody drugs, produced mainly using recombinant Chinese hamster ovary (CHO) cells. The regulation of recombinant CHO cell proliferation can improve the productivity of heterologous proteins. Chemical compound approaches for cell cycle regulation have the advantages of simplicity and ease of use in industrial processes. However, CHO cells have genetic and phenotypic diversity, and the effects of such compounds might depend on cell line and culture conditions. Increasing the variety of cell cycle inhibitors is a promising strategy to overcome the dependency. Marine microorganisms are a vast and largely undeveloped source of secondary metabolites with physiological activity. In this study, we focused on secondary metabolites of marine microorganisms and evaluated their effectiveness as cell cycle inhibitory compounds. Of 720 extracts from microorganisms (400 actinomycetes and 320 filamentous fungi) collected from the Okinawan Sea, we identified nine extracts that decreased the specific growth rate and increased the specific production rate without reducing cell viability. After fractionating the extracts, the components of active fractions were estimated using time-of-flight mass spectrometry analysis. Then, four compounds, including staurosporine and undecylprodigiosin were deduced to be active compounds. These compounds have been reported to exert a cell cycle inhibitory effect on mammalian cells. These compounds might serve as additives to improve mAb production in CHO cells. This study indicates that secondary metabolites of marine microorganisms are a useful source for new cell cycle inhibitory compounds that can increase mAb production in CHO cells.


Assuntos
Actinobacteria/química , Ciclo Celular/efeitos dos fármacos , Fungos/química , Inibidores do Crescimento/farmacologia , Água do Mar/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Células CHO , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Inibidores do Crescimento/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Estaurosporina/metabolismo , Estaurosporina/farmacologia
2.
Biores Open Access ; 5(1): 84-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096107

RESUMO

Xeno-free medium contains no animal-derived components, but is composed of minimal growth factors and is serum free; the medium may be supplemented with insulin, transferrin, and selenium (ITS medium). Serum-free and xeno-free culture of human-induced pluripotent stem cells (hiPSCs) uses a variety of components based on ITS medium and Dulbecco's modified Eagle's medium/Ham's nutrient mixture F12 (DMEM/F12) that contain high levels of iron salt and glucose. Culture of hiPSCs also requires scaffolding materials, such as extracellular matrix, collagen, fibronectin, laminin, proteoglycan, and vitronectin. The scaffolding component laminin-511, which is composed of α5, ß1, and γ1 chains, binds to α3ß1, α6ß1, and α6ß4 integrins on the cell membrane to induce activation of the PI3K/AKT- and Ras/MAPK-dependent signaling pathways. In hiPSCs, the interaction of laminin-511/α6ß1 integrin with the cell-cell adhesion molecule E-cadherin confers protection against apoptosis through the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathways for cell death) and the proto-oncogene tyrosine-protein kinase Fyn (Fyn)-RhoA-ROCK signaling pathway. The expression levels of α6ß1 integrin and E-cadherin on cell membranes are controlled through the activation of insulin receptor/insulin, FGF receptor/FGF2, or activin-like kinase 5 (ALK5)-dependent TGF-ß signaling. A combination of growth factors, medium constituents, cell membrane-located E-cadherin, and α6ß1 integrin-induced signaling is required for pluripotent cell proliferation and for optimal cell survival on a laminin-511 scaffold. In this review, we discuss and explore the influence of growth factors on the cadherin and integrin signaling pathways in serum-free and xeno-free cultures of hiPSCs during the preparation of products for regenerative medicinal therapies. In addition, we suggest the optimum serum-free medium components for use with laminin-511, a new scaffold for hiPSC culture.

3.
J Pharm Pharmacol ; 64(12): 1715-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23146034

RESUMO

OBJECTIVES: We previously established HepG2-GS-3A4, a cell line from hepatoblastoma with overexpression of human CYP3A4 and glutamine synthetase (GS). We further reported that these cells can be applied for screening inhibitors of CYP3A4 in vitro. The purpose of this study was to determine whether our CYP3A4-overexpresed cell could be applied to evaluate mechanisms of CYP3A4 inhibition by 6',7'-dihydroxybergamottin (DHB), which is one of the major furanocoumarins in grapefruit juice, by using these cells. METHODS: Nifedipine oxidation, activity and protein expression of NADPH-cytochrome reductase (POR) of HepG2-GS-3A4 cell were measured. CO-binding spectrumassay in microsomal fraction of the cells was also evaluated. KEY FINDINGS: DHB and ketoconazole, a well-known inhibitor of CYP3A4, inhibited nifedipine oxidation in a concentration-dependent manner. DHB at a concentration of 3.0 µm, sufficient to inhibit the nifedipine oxidation, decreased POR activity; however, ketoconazole at a concentration of 0.9 µm, sufficient to inhibit the oxidation, did not affect the activity. The expression of POR protein in HepG2-GS-3A4 cells was not changed by either DHB or ketoconazole. The expression of CYP3A4 mRNA and protein was not changed by the addition of DHB or ketoconazole. DHB also reduced the absorption rate at 450 nm in a CO-binding spectrum assay without alteration of the wavelength of maximum absorption. The mean absorption value at 450 nm slightly decreased with ketoconazole; however, the difference was not significant. CONCLUSIONS: We concluded that inhibition of CYP3A4 activity by DHB includes the inhibition of POR activity. HepG2-GS-3A4 might be a good tool to evaluate the mechanisms.


Assuntos
Citrus paradisi/química , Inibidores do Citocromo P-450 CYP3A , Interações Alimento-Droga , Furocumarinas/farmacologia , Modelos Biológicos , NADPH-Ferri-Hemoproteína Redutase/antagonistas & inibidores , Nifedipino/metabolismo , Citocromo P-450 CYP3A/genética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Cetoconazol/farmacologia , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA