Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bone ; 105: 163-172, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28867373

RESUMO

Sustained elevation of parathyroid hormone (PTH) is catabolic to cortical bone, as evidenced by deterioration in bone structure (cortical porosity), and is a major factor for increased fracture risk in chronic kidney disease (CKD). Etelcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces PTH levels in subtotal nephrectomized (Nx) rats and in hemodialysis patients with secondary hyperparathyroidism (SHPT) in clinical studies; however, effects of etelcalcetide on bone have not been determined. In a rat model of established SHPT with renal osteodystrophy, etelcalcetide or vehicle was administered by subcutaneous (s.c.) injection to subtotal Nx rats with elevated PTH (>750pg/mL) once per day for 6weeks. Sham-operated rats receiving vehicle (s.c.) served as non-SHPT controls. Prior to treatment, significant increases in serum creatinine (2-fold), blood urea nitrogen (BUN, 3-fold), PTH (5-fold), fibroblast growth factor-23 (FGF23; 13-fold) and osteocalcin (12-fold) were observed in SHPT rats compared to non-SHPT controls. Elevations in serum creatinine and BUN were unaffected by treatment with vehicle or etelcalcetide. In contrast, etelcalcetide significantly decreased PTH, FGF23 and osteocalcin, whereas vehicle treatment did not. Cortical bone porosity increased and bone strength decreased in vehicle-treated SHPT rats compared to non-SHPT controls. Cortical bone structure improved and energy to failure was significantly greater in SHPT rats treated with etelcalcetide compared to vehicle. Mineralization lag time and marrow fibrosis were significantly reduced by etelcalcetide. In conclusion, etelcalcetide reduced bone turnover, attenuated mineralization defect and marrow fibrosis, and preserved cortical bone structure and bone strength by lowering PTH in subtotal Nx rats with established SHPT.


Assuntos
Osso Cortical/fisiopatologia , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/fisiopatologia , Nefrectomia , Peptídeos/uso terapêutico , Receptores de Detecção de Cálcio/agonistas , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Cálcio/sangue , Osso Cortical/efeitos dos fármacos , Creatinina/sangue , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Hiperparatireoidismo Secundário/sangue , Hiperplasia , Testes de Função Renal , Masculino , Osteocalcina/sangue , Glândulas Paratireoides/patologia , Hormônio Paratireóideo/sangue , Peptídeos/farmacologia , Fósforo/sangue , Ratos Sprague-Dawley , Fosfatase Ácida Resistente a Tartarato/sangue
2.
Endocrinology ; 155(12): 4785-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25259718

RESUMO

The effects of up to 26 weeks of sclerostin antibody (Scl-Ab) treatment were investigated in ovariectomized (OVX) rats. Two months after surgery, 6-month-old osteopenic OVX rats were treated with vehicle or Scl-Ab (25 mg/kg, sc, one time per week) for 6, 12, or 26 weeks. In vivo dual-energy x-ray absorptiometry analysis demonstrated that the bone mineral density of lumbar vertebrae and femur-tibia increased progressively through 26 weeks of Scl-Ab treatment along with progressive increases in trabecular and cortical bone mass and bone strength at multiple sites. There was a strong correlation between bone mass and maximum load at lumbar vertebra, femoral neck, and diaphysis at weeks 6 and 26. Dynamic histomorphometric analysis showed that lumbar trabecular and tibial shaft endocortical and periosteal bone formation rates (BFR/BS) increased and peaked at week 6 with Scl-Ab-treatment; thereafter trabecular and endocortical BFR/BS gradually declined but remained significantly greater than OVX controls at week 26, whereas periosteal BFR/BS returned to OVX control levels at week 26. In the tibia metaphysis, trabecular BFR/BS in the Scl-Ab treated group remained elevated from week 6 to week 26. The osteoclast surface and eroded surface were significantly lower in Scl-Ab-treated rats than in OVX controls at all times. In summary, bone mass and strength increased progressively over 26 weeks of Scl-Ab treatment in adult OVX rats. The early gains were accompanied by increased cortical and trabecular bone formation and reduced osteoclast activity, whereas later gains were attributed to residual endocortical and trabecular osteoblast stimulation and persistently low osteoclast activity.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Osso e Ossos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Marcadores Genéticos , Ovariectomia , Distribuição Aleatória , Ratos Sprague-Dawley , Microtomografia por Raio-X
3.
Osteoporos Int ; 22(3): 931-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20480144

RESUMO

UNLABELLED: Bone loss and recovery in a receptor activator for nuclear factor κ B ligand (RANKL)-administered rat model was assessed. Microarchitecture, mineralization and strength deteriorated faster than ovariectomy (OVX). Recovery was dependent on the loss of trabecular elements and connections. Early recovery suggests a natural mechanism in rats to overcome excess RANKL, and may have implications for long-term bone loss. PURPOSE: To compare a model for experimental osteoporosis that induces bone loss by injecting RANKL into rats to an OVX rat model, and measure subsequent recovery of bone architecture, mineralization, and mechanics after stopping injections. METHODS: Mature, healthy, female Wistar rats were divided into high-dose RANKL, low-dose RANKL, OVX, and vehicle control groups. The right proximal tibiae were micro-computed tomography (micro-CT) scanned in vivo every 2 weeks from week 0 to week 12 and every 4 weeks from week 12 to week 20. Bone architectural, mineralization, and mechanical changes were determined. Serum calcium, RANKL, anti-RANKL, and osteoprotegerin were measured at weeks 0, 6, and 20. RESULTS: High-dose RANKL administration resulted in severe deterioration of the trabecular architecture (39% of baseline BV/TV), and modest decreases in tissue mineralization, bone mass, and stiffness. Bone loss occurred more rapidly than in the OVX and low-dose RANKL group, and recovery occurred prior to stopping RANKL injections. Full recovery of trabecular thickness, tissue mineralization, and cortical bone mass, partial recovery of trabecular bone volume (55% of baseline), structural model index, bone mass (69% of baseline), and stiffness (90% of baseline) but no improvement in connectivity density or trabecular number was observed. CONCLUSION: RANKL administration resulted in rapid and dose-dependent bone loss. The recovery of trabecular bone volume and stiffness appeared to be dependent on the number of remaining trabecular elements and their interconnections. Uncontrolled recovery suggests that further investigation into the RANKL-injected rat as a model of bone loss is required.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Osteoporose/fisiopatologia , Ligante RANK/farmacologia , Tíbia/efeitos dos fármacos , Animais , Cálcio/sangue , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Aumento da Imagem , Imageamento Tridimensional , Osteoporose/induzido quimicamente , Osteoprotegerina/sangue , Ovariectomia , Ligante RANK/sangue , Ratos , Ratos Wistar , Tíbia/diagnóstico por imagem , Tíbia/ultraestrutura , Tomografia Computadorizada por Raios X
4.
J Bone Miner Res ; 25(12): 2647-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20641040

RESUMO

The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl-AbII) on bone formation, bone mass, and bone strength in an aged, gonad-intact male rat model. Sixteen-month-old male Sprague-Dawley rats were injected subcutaneously with vehicle or Scl-AbII at 5 or 25 mg/kg twice per week for 5 weeks (9-10/group). In vivo dual-energy X-ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L(1) to L(5) ) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl-AbII-treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment. Ex vivo micro-computed tomographic (µCT) analysis demonstrated improved trabecular and cortical architecture at the fifth lumbar vertebral body (L(5) ), femoral diaphysis (FD), and femoral neck (FN) in both Scl-AbII dose groups compared with vehicle controls. The increased cortical and trabecular bone mass was associated with a significantly higher maximal load of L(5) , FD, and FN in the high-dose group. Bone-formation parameters (ie, mineralizing surface, mineral apposition rate, and bone-formation rate) at the proximal tibial metaphysis and tibial shaft were markedly greater on trabecular, periosteal, and endocortical surfaces in both Scl-AbII dose groups compared with controls. These results indicate that sclerostin inhibition by treatment with a sclerostin antibody increased bone formation, bone mass, and bone strength in aged male rats and, furthermore, suggest that pharmacologic inhibition of sclerostin may represent a promising anabolic therapy for low bone mass in aged men.


Assuntos
Envelhecimento/metabolismo , Anticorpos Monoclonais/imunologia , Densidade Óssea/fisiologia , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Osteogênese , Absorciometria de Fóton , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Colágeno Tipo I/metabolismo , Marcadores Genéticos , Masculino , Tamanho do Órgão , Osteocalcina/sangue , Ratos , Ratos Sprague-Dawley , Serotonina/sangue , Tomografia Computadorizada por Raios X
5.
J Biol Chem ; 285(36): 28164-73, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20558734

RESUMO

PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover,--i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK(-/-) mice. PTH increased osteocalcin similarly in RANK(-/-) and WT mice. It also increased BMD in RANK(-/-) mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces.


Assuntos
Alendronato/farmacologia , Anticorpos Monoclonais/farmacologia , Osso e Ossos/metabolismo , Técnicas de Introdução de Genes , Osteoclastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Ligante RANK/farmacologia , Receptor Ativador de Fator Nuclear kappa-B/genética , Alendronato/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Denosumab , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ovariectomia , Hormônio Paratireóideo/administração & dosagem , Ligante RANK/administração & dosagem , Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Receptor Ativador de Fator Nuclear kappa-B/deficiência , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA