Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 141(10): 2075-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24803655

RESUMO

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Rede Nervosa/embriologia , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/embriologia , Tálamo/embriologia , Animais , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Vias Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição/fisiologia
2.
Brain Res ; 957(2): 231-41, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12445965

RESUMO

The ventrolateral part of the parafascicular thalamic nucleus (PF), which is considered to take part in the control mechanism of orofacial motor functions, receives projection fibers not only from the dorsolateral part of the substantia nigra pars reticulata (SNr) but also from the ventral part of the reticular thalamic nucleus (RT) [Tsumori et al., Brain Res. 858 (2000) 429]. In order to better understand the influence of these fibers upon the PF projection neurons, the morphology, synaptology and chemical nature of them were examined in the present study. After ipsilateral injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) into the dorsolateral part of the SNr and biotinylated dextran amine (BDA) into the ventral part of the RT, overlapping distributions of PHA-L-labeled SNr fibers and BDA-labeled RT fibers were seen in the ventrolateral part of the PF. At the electron microscopic level, the SNr terminals made synapses predominantly with the medium to small dendrites and far less frequently with the somata and large dendrites, whereas approximately half of the RT terminals made synapses with the somata and large dendrites and the rest did with the medium to small dendrites of PF neurons. Some of single dendritic as well as single somatic profiles received convergent synaptic inputs from both sets of terminals. These terminals were packed with pleomorphic synaptic vesicles and formed symmetrical synapses. After combined injections of PHA-L into the dorsolateral part of the SNr, BDA into the ventral part of the RT and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the ventrolateral part of the striatum or into the rostroventral part of the lateral agranular cortex, WGA-HRP-labeled neurons were embedded in the plexus of PHA-L- and BDA-labeled axon terminals within the ventrolateral part of the PF, where the PHA-L- and/or BDA-labeled terminals were in synaptic contact with single somatic and dendritic profiles of the WGA-HRP-labeled neurons. Furthermore, the SNr and RT axon terminals were revealed to be immunoreactive for gamma-aminobutyric acid (GABA), by using the anterograde BDA tracing technique combined with immunohistochemistry for GABA. The present data suggest that GABAergic SNr and RT fibers may exert different inhibitory influences on the PF neurons for regulating the thalamic outflow from the PF to the cerebral cortex and/or striatum in the control of orofacial movements.


Assuntos
Núcleos Intralaminares do Tálamo/ultraestrutura , Inibição Neural/fisiologia , Vias Neurais/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Substância Negra/ultraestrutura , Ácido gama-Aminobutírico/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Núcleos Intralaminares do Tálamo/metabolismo , Masculino , Microscopia Eletrônica , Córtex Motor/metabolismo , Córtex Motor/ultraestrutura , Vias Neurais/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA