Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fluoresc ; 34(1): 367-380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37266836

RESUMO

Exposure of antimalarial herbal drugs (AMHDs) to ultraviolet radiation (UVR) affects the potency and integrity of the AMHDs. Instant classification of the AMHDs exposed to UVR (UVR-AMHDs) from unexposed ones (Non-UVR-AMHDs) would be beneficial for public health safety, especially in warm regions. For the first time, this work combined laser-induced autofluorescence (LIAF) with chemometric techniques to classify UVR-AMHDs from Non-UVR-AMHDs. LIAF spectra data were recorded from 200 ml of each of the UVR-AMHDs and Non-UVR-AMHDs. To extract useful data from the spectra fingerprint, principal components (PCs) analysis was used. The performance of five chemometric algorithms: random forest (RF), neural network (NN), support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbour (KNN), were compared after optimization by validation. The chemometric algorithms showed that KNN, SVM, NN, and RF were superior with a classification accuracy of 100% for UVR-AMHDs while LDA had a classification accuracy of 98.8% after standardization of the spectra data and was used as an input variable for the model. Meanwhile, a classification accuracy of 100% was obtained for KNN, LDA, SVM, and NN when the raw spectra data was used as input except for RF for which a classification accuracy of 99.9% was obtained. Classification accuracy above 99.74 ± 0.26% at 3 PCs in both the training and testing sets were obtained from the chemometric models. The results showed that the LIAF, combined with the chemometric techniques, can be used to classify UVR-AMHDs from Non-UVR-AMHDs for consumer confidence in malaria-prone regions. The technique offers a non-destructive, rapid, and viable tool for identifying UVR-AMHDs in resource-poor countries.


Assuntos
Antimaláricos , Raios Ultravioleta , Quimiometria , Análise Discriminante , Lasers , Máquina de Vetores de Suporte
2.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C103-C110, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175736

RESUMO

Laser-induced fluorescence (LIF) combined with multivariate techniques has been used in identifying antimalarial herbal plants (AMHPs) based on their geographical origin. The AMHP samples were collected from four geographical origins (Abrafo, Jukwa, Nfuom, and Akotokyere) in the Cape Coast Metropolis, Ghana. LIF spectra data were recorded from the AMHP samples. Utilizing multivariate techniques, a training set for the first two principal components of the AMHP spectra data was modeled through the use of K-nearest neighbor (KNN), support vector nachine (SVM), and linear discriminant analysis (LDA) methods. The SVM and KNN methods performed best with 100% success for the prediction data, while the LDA had a 99% success rate. The KNN and SVM methods are recommended for the identification of AMHPs based on their geographical origins. Deconvoluted peaks from the LIF spectra of all the AMHP samples revealed compounds such as quercetin and berberine as being present in all the AMHP samples.


Assuntos
Antimaláricos/química , Fluorescência , Geografia , Medicina Herbária/classificação , Lasers , Análise Discriminante , Análise Multivariada , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA