Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Behav ; 209: 112617, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319109

RESUMO

To assess the hypothesis that Na+/K+-ATPase (NKA) is involved in the central regulation of food intake in fish, we observed in a first experiment with rainbow trout (Oncorhynchus mykiss) that intracerebroventricular (ICV) treatment with ouabain decreased food intake. We hypothesized that this effect relates to modulation of glucosensing mechanisms in brain areas (hypothalamus, hindbrain, and telencephalon) involved in food intake control. Therefore, we evaluated in a second experiment, the effect of ICV administration of ouabain, in the absence or in the presence of glucose, on NKA activity, mRNA abundance of different NKA subunits, parameters related to glucosensing, transcription factors, and appetite-related neuropeptides in brain areas involved in the control of food intake. NKA activity and mRNA abundance of nkaα1a and nkaα1c in brain were inhibited by ouabain treatment and partially by glucose. The anorectic effect of ouabain is opposed to the orexigenic effect reported in mammals. The difference might relate to the activity of glucosensing as well as downstream mechanisms involved in food intake regulation. Ouabain inhibited glucosensing mechanisms, which were activated by glucose in hypothalamus and telencephalon. Transcription factors and neuropeptides displayed responses comparable to those elicited by glucose when ouabain was administered alone, but not when glucose and ouabain were administered simultaneously. Ouabain might therefore affect other processes, besides glucosensing mechanisms, generating changes in membrane potential and/or intracellular pathways finally modulating transcription factors and neuropeptide mRNA abundance leading to modified food intake.


Assuntos
Química Encefálica/fisiologia , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Oncorhynchus mykiss/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Química Encefálica/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Infusões Intraventriculares , Neuropeptídeos/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Telencéfalo/efeitos dos fármacos , Telencéfalo/enzimologia , Telencéfalo/metabolismo
2.
J Exp Biol ; 220(Pt 23): 4410-4417, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970346

RESUMO

There is no available information about mechanisms linking glucosensing activation in fish and changes in the expression of brain neuropeptides controlling food intake. Therefore, we assessed in rainbow trout hypothalamus the effects of raised levels of glucose on the levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking these processes. We also aimed to assess the changes in the levels and phosphorylation status of two proteins possibly involved in the modulation of these transcription factors: Akt and AMPK. Therefore, in pooled preparations of hypothalamus incubated for 3 and 6 h in the presence of 2, 4 or 8 mmol l-1 d-glucose, we evaluated the response of parameters related to glucosensing mechanisms, neuropeptide expression and levels and phosphorylation status of the proteins of interest. The activation of hypothalamic glucosensing systems and the concomitant enhanced anorectic potential occurred in parallel with activation of Akt and inhibition of AMPK. The changes in these proteins relate to neuropeptide expression through changes in the level and phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses to increased glucose.


Assuntos
Proteínas de Peixes/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fosforilação
3.
J Mol Endocrinol ; 59(4): 377-390, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28951437

RESUMO

We assessed in rainbow trout hypothalamus the effects of oleate and octanoate on levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking activation of fatty acid sensing with modulation of food intake through the expression of brain neuropeptides. Moreover, we assessed changes in the phosphorylation status of three proteins possibly involved in modulation of these transcription factors such as Akt, AMPK and mTOR. In a first experiment, we evaluated, in pools of hypothalamus incubated for 3 h and 6 h at 15°C in a modified Hanks' medium containing 100 or 500 µM oleate or octanoate, the response of fatty acid sensing, neuropeptide expression and phosphorylation status of proteins of interest. The activation of fatty acid sensing and enhanced anorectic potential occurred in parallel with the activation of Akt and mTOR, and the inhibition of AMPK. The changes in these proteins would relate to a neuropeptide expression through changes in the phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses when tissues were incubated with oleate or octanoate. In a second experiment, we incubated hypothalamus for 6 h with 500 µM oleate or octanoate alone or in the presence of specific inhibitors of Akt, AMPK, mTOR, CREB or FoxO1. The presence of inhibitors counteracted the effects of oleate or octanoate on the phosphorylation status of the proteins of interest. The results support, for the first time in fish, the involvement of these proteins in the regulation of food intake by fatty acids.


Assuntos
Regulação do Apetite , Ingestão de Alimentos , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caprilatos/metabolismo , Proteína Forkhead Box O1/metabolismo , Ácido Oleico/metabolismo , Fosforilação , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Exp Biol ; 219(Pt 11): 1750-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27026717

RESUMO

We previously obtained evidence in rainbow trout for the presence and response to changes in circulating levels of glucose (induced by intraperitoneal hypoglycaemic and hyperglycaemic treatments) of glucosensing mechanisms based on liver X receptor (LXR), mitochondrial production of reactive oxygen species (ROS) leading to increased expression of uncoupling protein 2 (UCP2), and sweet taste receptor in the hypothalamus, and on sodium/glucose co-transporter 1 (SGLT-1) in hindbrain. However, these effects of glucose might be indirect. Therefore, we evaluated the response of parameters related to these glucosensing mechanisms in a first experiment using pooled sections of hypothalamus and hindbrain incubated for 6 h at 15°C in modified Hanks' medium containing 2, 4 or 8 mmol l(-1) d-glucose. The responses observed in some cases were consistent with glucosensing capacity. In a second experiment, pooled sections of hypothalamus and hindbrain were incubated for 6 h at 15°C in modified Hanks' medium with 8 mmol l(-1) d-glucose alone (control) or containing 1 mmol l(-1) phloridzin (SGLT-1 antagonist), 20 µmol l(-1) genipin (UCP2 inhibitor), 1 µmol l(-1) trolox (ROS scavenger), 100 µmol l(-1) bezafibrate (T1R3 inhibitor) and 50 µmol l(-1) geranyl-geranyl pyrophosphate (LXR inhibitor). The response observed in the presence of these specific inhibitors/antagonists further supports the proposal that critical components of the different glucosensing mechanisms are functioning in rainbow trout hypothalamus and hindbrain.


Assuntos
Glucoquinase/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Rombencéfalo/metabolismo , Animais , Receptores X do Fígado/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
5.
J Comp Physiol B ; 186(3): 313-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26832922

RESUMO

In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 µg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 µg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.


Assuntos
Ingestão de Alimentos/fisiologia , Proteínas de Peixes/genética , Hipotálamo/fisiologia , Oncorhynchus mykiss/fisiologia , Receptor 5-HT2C de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Proteínas de Peixes/metabolismo , Expressão Gênica , Hipotálamo/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pirazinas/farmacologia , Quinoxalinas/farmacologia , RNA Mensageiro/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia
6.
Gen Comp Endocrinol ; 228: 33-39, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828819

RESUMO

We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish.


Assuntos
Grelina/farmacologia , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/fisiologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Grelina/administração & dosagem , Hipotálamo/efeitos dos fármacos , Infusões Intraventriculares , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oncorhynchus mykiss/crescimento & desenvolvimento , Oxirredução
7.
J Endocrinol ; 228(1): 25-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459641

RESUMO

There is no information available on fish as far as the possible effects of ghrelin on hypothalamic fatty acid metabolism and the response of fatty acid-sensing systems, which are involved in the control of food intake. Therefore, we assessed in rainbow trout the response of food intake, hypothalamic fatty acid-sensing mechanisms and expression of neuropeptides involved in the control of food intake to the central treatment of ghrelin in the presence or absence of a long-chain fatty acid such as oleate. We observed that the orexigenic actions of ghrelin in rainbow trout are associated with changes in fatty acid metabolism in the hypothalamus and an inhibition of fatty acid-sensing mechanisms, which ultimately lead to changes in the expression of anorexigenic and orexigenic peptides resulting in increased orexigenic potential and food intake. Moreover, the response to increased levels of oleate of hypothalamic fatty acid-sensing systems (activation), expression of neuropeptides (enhanced anorexigenic potential) and food intake (decrease) were counteracted by the simultaneous treatment with ghrelin. These changes provide evidence for the first time in fish of a possible modulatory role of ghrelin on the metabolic regulation by fatty acid of food intake occurring in the hypothalamus.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Expressão Gênica/efeitos dos fármacos , Homeostase/fisiologia , Hipotálamo/fisiologia , Neuropeptídeos/análise , Neuropeptídeos/genética , Ácido Oleico/administração & dosagem , Ácido Oleico/análise , Ácido Oleico/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária
8.
PLoS One ; 10(5): e0128603, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996158

RESUMO

We hypothesize that glucosensor mechanisms other than that mediated by glucokinase (GK) operate in hypothalamus and hindbrain of the carnivorous fish species rainbow trout and stress affected them. Therefore, we evaluated in these areas changes in parameters which could be related to putative glucosensor mechanisms based on liver X receptor (LXR), mitochondrial activity, sweet taste receptor, and sodium/glucose co-transporter 1 (SGLT-1) 6 h after intraperitoneal injection of 5 mL x Kg(-1) of saline solution alone (normoglycaemic treatment) or containing insulin (hypoglycaemic treatment, 4 mg bovine insulin x Kg(-1) body mass), or D-glucose (hyperglycaemic treatment, 500 mg x Kg(-1) body mass). Half of tanks were kept at a 10 Kg fish mass x m(-3) and denoted as fish under normal stocking density (NSD) whereas the remaining tanks were kept at a stressful high stocking density (70 kg fish mass x m(-3)) denoted as HSD. The results obtained in non-stressed rainbow trout provide evidence, for the first time in fish, that manipulation of glucose levels induce changes in parameters which could be related to putative glucosensor systems based on LXR, mitochondrial activity and sweet taste receptor in hypothalamus, and a system based on SGLT-1 in hindbrain. Stress altered the response of parameters related to these systems to changes in glycaemia.


Assuntos
Glicemia/metabolismo , Glucoquinase/metabolismo , Hipotálamo/metabolismo , Rombencéfalo/metabolismo , Animais , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Hipotálamo/efeitos dos fármacos , Insulina/farmacologia , Receptores X do Fígado , Oncorhynchus mykiss , Receptores Nucleares Órfãos/metabolismo , Rombencéfalo/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Paladar/fisiologia
9.
Physiol Behav ; 129: 272-9, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24631300

RESUMO

If levels of fatty acids like oleate and octanoate are directly sensed through different fatty acid (FA) sensing systems in hypothalamus of rainbow trout, intracerebroventricular (ICV) administration of FA should elicit effects similar to those previously observed after intraperitoneal (IP) treatment. Accordingly, we observed after ICV treatment with oleate or octanoate decreased food intake accompanied in hypothalamus by reduced potential of lipogenesis and FA oxidation, and decreased potential of ATP-dependent inward rectifier potassium channel (K(+)ATP). Those changes support direct FA sensing through mechanisms related to FA metabolism and mitochondrial activity. The FA sensing through binding to FAT/CD36 and subsequent expression of transcription factors appears to be also direct but an interaction with peripheral hormones cannot be rejected. Moreover, decreased expression of NPY and increased expression of POMC were observed in parallel with the activation of FA sensing systems and decreased food intake. These results allow us to suggest the involvement of at least these peptides in controlling the decreased food intake noted after oleate and octanoate treatment in rainbow trout.


Assuntos
Depressores do Apetite/farmacologia , Caprilatos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Ácido Oleico/farmacologia , Oncorhynchus mykiss/metabolismo , Animais , Antígenos CD36/metabolismo , Ingestão de Alimentos/fisiologia , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Hipotálamo/metabolismo , Canais KATP/metabolismo , Lipogênese/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Oxirredução/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA