Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 142: 111907, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339916

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction(HQGZWWD) is a Traditional Chinese Medicine formula from Synopsis of Golden Chamber used to treat blood arthralgia. According to the principle that the same treatment can be used for different diseases, HQGZWWD has proven effective for IgA nephropathy (IgAN) associated with spleen and kidney yang deficiency. AIM OF THE STUDY: In this study, we investigated the mechanism by which HQGZWWD alleviates proteinuria and protects renal function in rats with IgAN by regulating the AT1R/Nephrin/c-Abl pathway. METHODS: Rats were randomly divided into six groups: control, IgAN model, IgAN model treated with low-dose HQGZWWD, IgAN model treated with medium-dose HQGZWWD, IgAN model treated with high-dose HQGZWWD, and IgAN model treated with valsartan. IgAN was induced using bovine γ-globulin. We evaluated the mediating effects of HQGZWWD on podocyte cytoskeletal proteins, the AT1R/Nephrin/c-Abl pathway, upstream tumor necrosis factor-α (TNF-α), and TNF-α receptor-1 (TNFR1). RESULTS: The IgAN rats displayed proteinuria, IgA deposition in the mesangial region, and podocyte cytoskeletal protein damage. The expression of TNF-α, TNFR1, AT1R, and c-Abl was increased in the IgAN rat kidney, whereas the expression of nephrin, podocin, ACTN4, and phosphorylated nephrin (p-nephrin) was reduced. HQGZWWD treatment significantly alleviated podocyte cytoskeletal protein damage in the IgAN rats, upregulated the expression of nephrin, podocin, and ACTN4, and the colocalized expression of F-actin and nephrin. This study demonstrates that HQGZWWD attenuates podocyte cytoskeletal protein damage by regulating the AT1R-nephrin- c-Abl pathway, upregulating the expression of p-nephrin, and downregulating the expression of AT1R and c-Abl. CONCLUSIONS: These results indicate that HQGZWWD attenuates podocyte cytoskeletal protein damage in IgAN rats by regulating the AT1R/Nephrin/c-Abl pathway, providing a potential therapeutic approach for IgAN.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Glomerulonefrite por IGA/tratamento farmacológico , Proteínas de Membrana/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Imunoglobulina A/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Podócitos/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Proteinúria/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31915448

RESUMO

OBJECTIVE: Renal anemia in patients with end-stage chronic kidney disease is closely related to the deterioration of cardiac function, renal function, and quality of life. This study involved adenine-induced renal anemic rat models and evaluated the treatment effect of Siwu granules and/or erythropoietin (EPO). METHODS: Fifty SD rats were randomly divided into 5 groups: control, model, Siwu, EPO, and Siwu plus EPO groups. The expression levels of NO, MDA, SOD, CAT, IL-6, TNF-α, EPO, EPOR, α-SMA, and TGF-ß1 were detected in rats after 8 weeks of treatment with Siwu granules and/or EPO. RESULTS: After modeling, 47 rats entered the stage of treatment. Siwu plus EPO treatment significantly increased the rat hemoglobin content (p < 0.05) and reduced blood urea nitrogen (p < 0.05) and serum creatinine (p < 0.001). Compared with the control group, the expression of EPO and EPOR in the kidney of rats with renal failure was significantly decreased (p < 0.05). Moreover, the Siwu plus EPO group improved the level of oxidative stress in rats with chronic renal failure and reduced the expression of inflammatory factors. The expression of α-SMA and TGF-ß1 in rats with renal failure was higher, but there was no expression in the control group. CONCLUSION: Combined treatment of Siwu granules with EPO increased the expression of EPO and EPOR in the renal tissues and inhibited oxidative stress and inflammatory factors, improving the renal function and anemia.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30046344

RESUMO

OBJECTIVE: To explore the effect and mechanism of ShiZhiFang on uric acid metabolism. METHODS: 40 rats were divided into normal group, model group, ShiZhiFang group, and benzbromarone group. The hyperuricemic rat model was induced by yeast gavage at 15 g/kg and potassium oxonate intraperitoneal injection at 600 mg/kg for two weeks. During the next two weeks, ShiZhiFang group rats were given ShiZhiFang by gavage, and benzbromarone group rats were given benzbromarone by gavage. The serum uric acid, creatinine, blood urea nitrogen, XOD activity, urinary uric acid, urinary ß2-MG, and histopathological changes were observed in the rats of each group after treatment. RESULTS: The hyperuricemic model was established successfully and did not show the increase of serum creatinine and blood urea nitrogen. Compared with the model group, the serum uric acid, serum XOD activity, and urinary ß2-MG were significantly decreased (p < 0.05), and 24 h urinary uric acid excretion was significantly decreased (p < 0.01) in ShiZhiFang group, whereas the two treatment groups were of no statistical significant in above indicators (p > 0.05); renal histopathology showed that the lesions in two treatment groups were reduced compared to the model groups. The gene and protein expression of uric acid anion transporters rOAT1 and rOAT3 in the kidney was significantly higher than that in model group (p < 0.01). CONCLUSION: The model is suitable for the study of primary hyperuricemia. The mechanisms of ShiZhiFang on uric acid metabolism in hyperuricemic rats may be involved in reducing the activity of serum XOD and promoting the transcription and expression of rOAT1 and rOAT3 in the kidney.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29358971

RESUMO

OBJECTIVE: Uric acid (UA) activates the NLRP3-ASC-caspase-1 axis and triggers cascade inflammatory that leads to hyperuricemic nephropathy and hyperuricemia-induced renal tubular injury. The original study aims to verify the positive effects of the traditional Chinese medicinal formula Shizhifang (SZF) on ameliorating the hyperuricemia, tubular injury, and inflammasome infiltration in the kidneys of hyperuricemic lab rats. METHOD: Twenty-eight male Sprague-Dawley rats were divided into four groups: control group, oxonic acid potassium (OA) model group, OA + SZF group, and OA + Allopurinol group. We evaluated the mediating effects of SZF on renal mitochondrial reactive oxygen species (ROS) and oxidative stress (OS) products, protein expression of NLRP3-ASC-caspase-1 axis, and downstream inflammatory factors IL-1ß and IL-18 after 7 weeks of animals feeding. RESULT: SZF alleviated OA-induced hyperuricemia and inhibited OS in hyperuricemic rats (P < 0.05). SZF effectively suppressed the expression of gene and protein of the NLRP3-ASC-caspase-1 axis through accommodating the ROS-TXNIP pathway (P < 0.05). CONCLUSION: Our data suggest that SZF alleviates renal tubular injury and inflammation infiltration by inhibiting NLRP3 inflammasome activation triggered by mitochondrial ROS in the kidneys of hyperuricemic lab rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA