Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Therm Biol ; 98: 102909, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016336

RESUMO

OBJECTIVE: Uncoupling protein one (UCP1) is involved in thermogenesis, especially in non-shivering heat production. In chickens, a single nucleotide polymorphism (SNP) of the av-UCP (avian UCP) gene has been reported to be associated with body weight gain and increased abdominal fat. The purpose of this study was to examine the relationship between the av-UCP gene SNP and heat production in chicks. METHODS: C/C and T/T male chicks (Rhode Island Red) of av-UCP gene SNP (g. 1270, C > T) were exposed to a low temperature environment (16 °C for 15 min) and their physiological responses were compared. RESULTS: After cold exposure, mean rectal temperatures of C/C chicks were higher than those of T/T chicks. In pectoral muscle, genes expression of av-UCP and carnitine palmitoyltransferase-1 were higher in C/C chicks than T/T chicks. Hypothalamic expression levels of thyrotropin-releasing hormone and proopiomelanocortin genes were higher in C/C chicks than T/T chicks. Expression of hypothalamic corticotropin-releasing hormone, arginine vasotocin, brain-derived neurotrophic factor and neuropeptide Y genes did not differ between C/C and T/T chicks. In addition, plasma free fatty acid levels in C/C chicks were lower than those of T/T chicks. CONCLUSION: These results suggest that the av-UCP gene SNP affects non-shivering heat production via the hypothalamo-pituitary-thyroid axis and fatty acid metabolism in the chicken.


Assuntos
Galinhas/genética , Galinhas/fisiologia , Temperatura Baixa , Termogênese/genética , Proteína Desacopladora 1/genética , Animais , Glicemia , Ácidos Graxos/sangue , Expressão Gênica , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Mutação , Polimorfismo de Nucleotídeo Único
2.
Brain Res Bull ; 172: 14-21, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862124

RESUMO

The adenosine A1 receptor is important for body temperature regulation in mammals; however, little is known about its function in avian species. In this study, we investigated the effects of the adenosine A1 receptor agonist and antagonist (adenosine 5'-monophosphate [5'-AMP] and 8 p-sulfophenyl theophylline [8-SPT], respectively) on thermoregulation in chickens. Male chicks were used in this study. After administration of 5'-AMP and 8-SPT, the rectal temperature, plasma metabolites, and gene expressions in the hypothalamus and liver were measured. The rectal temperature was reduced by peripheral administration of 5'-AMP, and the hypothermic effect of 5'-AMP was attenuated by central injection of 8-SPT in chicks. In the hypothalamus, the mRNA level of the agouti-related protein (AgRP) was increased by 5'-AMP administration, whereas it was suppressed by 8-SPT. The plasma levels of free fatty acid were elevated in 5'-AMP-treated chicks and that elevation was suppressed by the 8-SPT treatment. The gene expression of proopiomelanocortin in the hypothalamus was affected by 8-SPT. Nevertheless, the gene expressions of the thermoregulation-related genes, such as the thyrotropin-releasing hormone, were not affected by 5'-AMP and 8-SPT. Hepatic gene expressions related to lipid intake and metabolism were suppressed by 5'-AMP. However, the gene expression of the uncoupling protein was upregulated by 5'-AMP. Based on these results, birds, like mammals, will undergo adenosine A1 receptor-induced hypothermia. In conclusion, it is suggested that 5'-AMP-mediated hypothermia via the adenosine A1 receptor may affect the central melanocortin system and suppress hepatic lipid metabolism in chickens.


Assuntos
Monofosfato de Adenosina/farmacologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotermia Induzida , Fígado/efeitos dos fármacos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Glicemia , Galinhas , Ácidos Graxos não Esterificados/sangue , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologia , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
3.
J Therm Biol ; 94: 102759, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33293000

RESUMO

OBJECTIVE: The aim of the present study was to investigate the effects of repeated thermal conditioning (RTC) at an early age on physiological and behavioral responses in chicks. METHODS: Birds were assigned to one of the four treatments in which the RTC was exposure to 40 °C for 15 min daily. The treatments were 1) no thermal conditioning (control); 2) early exposure group (EE; RTC from 2 to 4 days of age); 3) later exposure group (LE; RTC from 5 to 7 days of age); or 4) both early and later exposure (BE; RTC from 2 to 7 days of age). All groups of chicks were challenged with high ambient temperature (40 °C for 15 min) at two weeks of age. RESULTS: During heat challenge, initiation times of dissipation behaviors (panting and wing-drooping) were measured. Rectal temperature and respiration rate were measured after and before heat challenge. Hypothalamic samples and blood were collected at the end of heat challenges. Initiation times of dissipation behaviors and rectal temperature were not affected by the treatments. Increases in respiration rate in response to heat challenge were suppressed by early RTC treatment. There was no clear pattern of glucose levels in relation to thermal conditioning, whereas plasma corticosterone levels were decreased by early treatment (EE and BE groups). Hypothalamic thyrotropin releasing hormone gene expression was suppressed by early and later thermal conditioning and suppressed further by both early and later exposure. Neuropeptide Y gene expression in the BE group was lower than in the other groups, with a similar trend for corticotropin releasing hormone expression. CONCLUSION: Our results suggest that the effect of repeated thermal conditioning on the central thermoregulatory system depends on the number of times that chicks experienced conditioning. In addition, repeated thermal conditioning has greater effects on the acquisition of thermotolerance when conditioning occurs in chicks of two to four days of age in comparison with chicks of five to seven days of age.


Assuntos
Regulação da Temperatura Corporal , Galinhas/fisiologia , Resposta ao Choque Térmico/fisiologia , Animais , Animais Recém-Nascidos , Comportamento Animal , Glicemia , Galinhas/sangue , Corticosterona/sangue , Ácidos Graxos não Esterificados/sangue , Expressão Gênica , Hipotálamo/metabolismo , Masculino , Taxa Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA