Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reg Anesth Pain Med ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37640452

RESUMO

INTRODUCTION: The evidence for spinal cord stimulation (SCS) has been criticized for the absence of blinded, parallel randomized controlled trials (RCTs) and limited evaluations of the long-term effects of SCS in RCTs. The aim of this study was to determine whether evoked compound action potential (ECAP)-controlled, closed-loop SCS (CL-SCS) is associated with better outcomes when compared with fixed-output, open-loop SCS (OL-SCS) 36 months following implant. METHODS: The EVOKE study was a multicenter, participant-blinded, investigator-blinded, and outcome assessor-blinded, randomized, controlled, parallel-arm clinical trial that compared ECAP-controlled CL-SCS with fixed-output OL-SCS. Participants with chronic, intractable back and leg pain refractory to conservative therapy were enrolled between January 2017 and February 2018, with follow-up through 36 months. The primary outcome was a reduction of at least 50% in overall back and leg pain. Holistic treatment response, a composite outcome including pain intensity, physical and emotional functioning, sleep, and health-related quality of life, and objective neural activation was also assessed. RESULTS: At 36 months, more CL-SCS than OL-SCS participants reported ≥50% reduction (CL-SCS=77.6%, OL-SCS=49.3%; difference: 28.4%, 95% CI 12.8% to 43.9%, p<0.001) and ≥80% reduction (CL-SCS=49.3%, OL-SCS=31.3%; difference: 17.9, 95% CI 1.6% to 34.2%, p=0.032) in overall back and leg pain intensity. Clinically meaningful improvements from baseline were observed at 36 months in both CL-SCS and OL-SCS groups in all other patient-reported outcomes with greater levels of improvement with CL-SCS. A greater proportion of patients with CL-SCS were holistic treatment responders at 36-month follow-up (44.8% vs 28.4%), with a greater cumulative responder score for CL-SCS patients. Greater neural activation and accuracy were observed with CL-SCS. There were no differences between CL-SCS and OL-SCS groups in adverse events. No explants due to loss of efficacy were observed in the CL-SCS group. CONCLUSION: This long-term evaluation with objective measurement of SCS therapy demonstrated that ECAP-controlled CL-SCS resulted in sustained, durable pain relief and superior holistic treatment response through 36 months. Greater neural activation and increased accuracy of therapy delivery were observed with ECAP-controlled CL-SCS than OL-SCS. TRIAL REGISTRATION NUMBER: NCT02924129.

2.
Med Biol Eng Comput ; 60(5): 1527-1540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349032

RESUMO

Overactive bladder patients suffer from a frequent, uncontrollable urge to urinate, which can lead to a poor quality of life. We aim to improve open-loop sacral neuromodulation therapy by developing a conditional stimulation paradigm using neural recordings from dorsal root ganglia (DRG) as sensory feedback. Experiments were performed in 5 anesthetized felines. We implemented a Kalman filter-based algorithm to estimate the bladder pressure in real-time using sacral-level DRG neural recordings and initiated sacral root electrical stimulation when the algorithm detected an increase in bladder pressure. Closed-loop neuromodulation was performed during continuous cystometry and compared to bladder fills with continuous and no stimulation. Overall, closed-loop stimulation increased bladder capacity by 13.8% over no stimulation (p < 0.001) and reduced stimulation time versus continuous stimulation by 57.7%. High-confidence bladder single units had a reduced sensitivity during stimulation, with lower linear trendline fits and higher pressure thresholds for firing observed during stimulation trials. This study demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control of sacral neuromodulation. An underlying mechanism for sacral neuromodulation may be a reduction in bladder sensory neuron activity during stimulation. Real-time validation during behavioral studies is necessary prior to clinical translation of closed-loop sacral neuromodulation.


Assuntos
Terapia por Estimulação Elétrica , Gânglios Espinais , Animais , Gatos , Retroalimentação Sensorial , Gânglios Espinais/fisiologia , Humanos , Qualidade de Vida , Bexiga Urinária/fisiologia
3.
Anal Bioanal Chem ; 413(7): 1799-1807, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33564926

RESUMO

High-dose methotrexate (HDMTX) combined with leucovorin (LV) is the first-line drug therapy for many kinds of malignant tumors. However, the specific treatment plans, such as dosage and duration of administration, are usually formulated according to the clinician's experience and therapeutic drug monitoring (TDM) of methotrexate in patients' plasma, which are responsible for strong individual differences of drug usage. A large number of studies have shown that methotrexate targets the inside of the cell. The key cytotoxic component is the methotrexate polyglutamates (MTXPGs) in the cell. The concentration of methotrexate in plasma does not reflect the efficacy and side effects well. Based on mass spectrometry technology, we developed and validated an accurate, sensitive, and stable method to quantify the intracellular MTX (MTXPG1) and its metabolites MTXPG2-7 simultaneously. The lower limit of quantification was 0.100 ng/ml, and the run time was only 3 min. Moreover, our team has already developed two LC-MS/MS-based methods to respectively quantify methotrexate in plasma samples and two key proteins (γ-glutamyl hydrolase [GGH] and folylpolyglutamate synthetase [FPGS]) in peripheral blood mononuclear cells (PBMC). Through these highly sensitive and accurate approaches, we have gained a deep understanding of the whole pharmacokinetic process of MTX and explored the key factors affecting the accumulation process of intracellular active components (MTXPGs). Based on this research, it is possible to find a more effective way to provide an accurate reference for clinical drug use than traditional therapeutic drug monitoring (TDM).


Assuntos
Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Leucovorina/administração & dosagem , Metotrexato/administração & dosagem , Espectrometria de Massas em Tandem/métodos , Animais , Química Farmacêutica/métodos , Cinética , Leucovorina/análise , Leucócitos Mononucleares/efeitos dos fármacos , Limite de Detecção , Masculino , Metotrexato/análogos & derivados , Metotrexato/análise , Metotrexato/sangue , Peptídeo Sintases/sangue , Peptídeos/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/sangue , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Temperatura , gama-Glutamil Hidrolase/sangue
4.
IEEE Trans Neural Syst Rehabil Eng ; 27(6): 1209-1216, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021771

RESUMO

Overactive bladder (OAB) patients suffer from a frequent urge to urinate, which can lead to a poor quality of life. Current neurostimulation therapy uses open-loop electrical stimulation to alleviate symptoms. Continuous stimulation facilitates habituation of neural pathways and consumes battery power. Sensory feedback-based closed-loop stimulation may offer greater clinical benefit by driving bladder relaxation only when bladder contractions are detected, leading to increased bladder capacity. Effective delivery of such sensory feedback, particularly in real-time, is necessary to accomplish this goal. We implemented a Kalman filter-based model to estimate bladder pressure in real-time using unsorted neural recordings from sacral-level dorsal root ganglia, achieving a 0.88 ± 0.16 correlation coefficient fit across 35 normal and simulated OAB bladder fills in five experiments. We also demonstrated closed-loop neuromodulation using the estimated pressure to trigger pudendal nerve stimulation, which increased bladder capacity by 40% in two trials. An offline analysis indicated that unsorted neural signals had a similar stability over time as compared to sorted single units, which would require a higher computational load. We believe this paper demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control; however, real-time validation during behavioral studies is necessary prior to clinical translation.


Assuntos
Manometria/métodos , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiopatologia , Algoritmos , Animais , Gatos , Sistemas Computacionais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Retroalimentação Sensorial , Feminino , Gânglios Espinais/fisiopatologia , Masculino , Modelos Estatísticos , Relaxamento Muscular , Nervo Pudendo , Qualidade de Vida , Bexiga Urinária Hiperativa/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA