Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 147(14): 1079-1096, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011073

RESUMO

BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.


Assuntos
Aneurisma da Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Suínos , Camundongos Endogâmicos C57BL , Colina , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle
2.
J Nutr ; 150(4): 775-783, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851339

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in the world. Choline deficiency has been well studied in the context of liver disease; however, less is known about the effects of choline supplementation in HCC. OBJECTIVE: The objective of this study was to test whether choline supplementation could influence the progression of HCC in a high-fat-diet (HFD)-driven mouse model. METHODS: Four-day-old male C57BL/6J mice were treated with the chemical carcinogen, 7,12-dimethylbenz[a]anthracene, and were randomly assigned at weaning to a cohort fed an HFD (60% kcal fat) or an HFD with supplemental choline (60% kcal fat, 1.2% choline; HFD+C) for 30 wk. Blood was isolated at 15 and 30 wk to measure immune cells by flow cytometry, and glucose-tolerance tests were performed 2 wk prior to killing. Overall tumor burden was quantified, hepatic lipids were measured enzymatically, and phosphatidylcholine species were measured by targeted MS methods. Gene expression and mitochondrial DNA were quantified by quantitative PCR. RESULTS: HFD+C mice exhibited a 50-90% increase in both circulating choline and betaine concentrations in the fed state (P ≤ 0.05). Choline supplementation resulted in a 55% decrease in total tumor numbers, a 67% decrease in tumor surface area, and a 50% decrease in hepatic steatosis after 30 wk of diet (P ≤ 0.05). Choline supplementation increased the abundance of mitochondria and the relative expression of ß-oxidation genes by 21% and ∼75-100%, respectively, in the liver. HFD+C attenuated circulating myeloid-derived suppressor cells at 15 wk of feeding (P ≤ 0.05). CONCLUSIONS: Choline supplementation attenuated HFD-induced HCC and hepatic steatosis in male C57BL/6J mice. These results suggest a therapeutic benefit of choline supplementation in blunting HCC progression.


Assuntos
Colina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Animais , Betaína/sangue , Colina/sangue , DNA Mitocondrial/análise , Suplementos Nutricionais , Fígado Gorduroso/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/química , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia , Tamanho do Órgão/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA