Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(5): e0007227, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071090

RESUMO

BACKGROUND: There is a pressing need for drug discovery against visceral leishmaniasis, a life-threatening protozoal infection, as the available chemotherapy is antiquated and not bereft of side effects. Plants as alternate drug resources has rewarded mankind in the past and aimed in this direction, we investigated the antileishmanial potential of Cinnamomum cassia. METHODOLOGY: Dichloromethane, ethanolic and aqueous fractions of C. cassia bark, prepared by sequential extraction, were appraised for their anti-promastigote activity along with apoptosis-inducing potential. The most potent, C. cassia dichloromethane fraction (CBD) was evaluated for anti-amastigote efficacy in infected macrophages and nitric oxide (NO) production studied. The in vivo antileishmanial efficacy was assessed in L. donovani infected BALB/c mice and hamsters and various correlates of host protective immunity ascertained. Toxicity profile of CBD was investigated in vitro against peritoneal macrophages and in vivo via alterations in liver and kidney functions. The plant secondary metabolites present in CBD were identified by gas chromatography-mass spectroscopy (GC-MS). PRINCIPAL FINDINGS: CBD displayed significant anti-promastigote activity with 50% inhibitory concentration (IC50) of 33.6 µg ml-1 that was mediated via apoptosis. This was evidenced by mitochondrial membrane depolarization, increased proportion of cells in sub-G0-G1 phase, ROS production, PS externalization and DNA fragmentation (TUNEL assay). CBD also inhibited intracellular amastigote proliferation (IC50 14.06 µg ml-1) independent of NO production. The in vivo protection achieved was 80.91% (liver) and 82.92% (spleen) in mice and 75.61% (liver) and 78.93% (spleen) in hamsters indicating its profound therapeutic efficacy. CBD exhibited direct antileishmanial activity, as it did not specifically induce a T helper type (Th)-1-polarized mileu in cured hosts. This was evidenced by insignificant modulation of NO production, lymphoproliferation, DTH (delayed type hypersensitivity), serum IgG2a and IgG1 levels and production of Th2 cytokines (IL-4 and IL-10) along with restoration of pro-inflammatory Th1 cytokines (INF-γ, IL-12p70) to the normal range. CBD was devoid of any toxicity in vitro as well as in vivo. The chemical constituents, cinnamaldehyde and its derivatives present in CBD may have imparted the observed antileishmanial effect. CONCLUSIONS: Our study highlights the profound antileishmanial efficacy of C. cassia bark DCM fraction and merits its further exploration as a source of safe and effective antieishmanial compounds.


Assuntos
Antiprotozoários/administração & dosagem , Cinnamomum aromaticum/química , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Antiprotozoários/isolamento & purificação , Cricetinae , Citocinas/genética , Citocinas/imunologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Casca de Planta/química , Extratos Vegetais/isolamento & purificação
2.
Int J Nanomedicine ; 12: 2189-2204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356736

RESUMO

Visceral leishmaniasis (VL) is a fatal, vector-borne disease caused by the intracellular protozoa of the genus Leishmania. Most of the therapeutics for VL are toxic, expensive, or ineffective. Sesquiterpenes are a new class of drugs with proven antimicrobial and antiviral activities. Artemisinin is a sesquiterpene lactone with potent antileishmanial activity, but with limited access to infected cells, being a highly lipophilic molecule. Association of artemisinin with liposome is a desirable strategy to circumvent the problem of poor accessibility, thereby improving its efficacy, as demonstrated in a murine model of experimental VL. Nanoliposomal artemisinin (NLA) was prepared by thin-film hydration method and optimized using Box-Behnken design with a mean particle diameter of 83±16 nm, polydispersity index of 0.2±0.03, zeta potential of -27.4±5.7 mV, and drug loading of 33.2%±2.1%. Morphological study of these nanoliposomes by microscopy showed a smooth and spherical surface. The mechanism of release of artemisinin from the liposomes followed the Higuchi model in vitro. NLA was free from concomitant signs of toxicity, both ex vivo in murine macrophages and in vivo in healthy BALB/c mice. NLA significantly denigrated the intracellular infection of Leishmania donovani amastigotes and the number of infected macrophages ex vivo with an IC50 of 6.0±1.4 µg/mL and 5.1±0.9 µg/mL, respectively. Following treatment in a murine model of VL, NLA demonstrated superior efficacy compared to artemisinin with a percentage inhibition of 82.4%±3.8% in the liver and 77.6%±5.5% in spleen at the highest dose of 20 mg/kg body weight with modulation of cell-mediated immunity towards protective Th1 type. This study is the first report on the use of a liposomal drug delivery system for artemisinin as a promising alternative intervention against VL.


Assuntos
Artemisininas/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/química , Animais , Anti-Infecciosos/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Artemisininas/farmacologia , Liberação Controlada de Fármacos , Feminino , Imunidade Celular/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/imunologia , Lipossomos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Tamanho da Partícula , Reprodutibilidade dos Testes , Baço/efeitos dos fármacos , Eletricidade Estática
3.
Colloids Surf B Biointerfaces ; 130: 215-21, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936561

RESUMO

Visceral leishmaniasis (VL) is a fatal vector-borne parasitic syndrome attributable to the protozoa of the Leishmania donovani complex. The available chemotherapeutic options are not ideal due to their potential toxicity, high cost and prolonged treatment schedule. In the present study, we conjectured the use of nano drug delivery systems for plant-derived secondary metabolite; artemisinin as an alternative strategy for the treatment of experimental VL. Artemisinin-loaded poly lactic co-glycolic acid (ALPLGA) nanoparticles prepared were spherical in shape with a particle size of 220.0±15.0 nm, 29.2±2.0% drug loading and 69.0±3.3% encapsulation efficiency. ALPLGA nanoparticles administered at doses of 10 and 20mg/kg body weight showed superior antileishmanial efficacy compared with free artemisinin in BALB/c model of VL. There was a significant reduction in hepatosplenomegaly as well as in parasite load in the liver (85.0±5.4%) and spleen (82.0±2.4%) with ALPLGA nanoparticles treatment at 20mg/kg body weight compared to free artemisinin (70.3±0.6% in liver and 62.7±3.7% in spleen). In addition, ALPLGA nanoparticle treatment restored the defective host immune response in mice with established VL infection. The protection was associated with a Th1-biased immune response as evident from a positive delayed-type hypersensitivity reaction, escalated IgG2a levels, augmented lymphoproliferation and enhancement in proinflammatory cytokines (IFN-γ and IL-2) with significant suppression of Th2 cytokines (IL-10 and IL-4) after in vitro recall, compared to infected control and free artemisinin treatment. In conclusion, our results advocate superior efficacy of ALPLGA nanoparticles over free artemisinin, which was coupled with restoration of suppressed cell-mediated immunity in animal models of VL.


Assuntos
Artemisininas/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/química , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacologia , Anticorpos Antiprotozoários/sangue , Artemisia/química , Artemisininas/efeitos adversos , Artemisininas/química , Antígeno B7-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Hipersensibilidade Tardia/induzido quimicamente , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Fígado/patologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/parasitologia , Baço/patologia , Resultado do Tratamento
4.
Parasit Vectors ; 8: 183, 2015 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-25884649

RESUMO

BACKGROUND: Exploration of immunomodulatory antileishmanials of plant origin is now being strongly recommended to overcome the immune suppression evident during visceral leishmaniasis (VL) and high cost and toxicity associated with conventional chemotherapeutics. In accordance, we assessed the in vitro and in vivo antileishmanial and immunomodulatory potential of ethanolic fractions of Azadirachta indica leaves (ALE) and seeds (ASE). METHODS: A. indica fractions were prepared by sequential extraction of the powdered plant parts in hexane, ethanol and water. Erythrosin B staining was employed to appraise the anti-promastigote potential of ALE and ASE. Cytostatic or cytocidal mode of action was ascertained and alterations in parasite morphology were depicted under oil immersion light microscopy. Study of apoptotic correlates was performed to deduce the mechanism of induced cell death and anti-amastigote potential was assessed in Leishmania parasitized RAW 264.7 macrophages. In vivo antileishmanial effectiveness was evaluated in L. donovani infected BALB/c mice, accompanied by investigation of immunomodulatory potential of ALE and ASE. Adverse toxicity of the bioactive fractions against RAW macrophages was studied by MTT assay. In vivo side effects on the liver and kidney functions were also determined. Plant secondary metabolites present in ALE and ASE were analysed by Gas chromatography-mass spectrometry (GC-MS). RESULTS: ALE and ASE (500 µg ml(-1)) exhibited leishmanicidal activity in a time- and dose-dependent manner (IC50 34 and 77.66 µg ml(-1), respectively) with alterations in promastigote morphology and induction of apoptosis. ALE and ASE exerted appreciable anti-amastigote potency (IC50 17.66 and 24.66 µg ml(-1), respectively) that was coupled with profound in vivo therapeutic efficacy (87.76% and 85.54% protection in liver and 85.55% and 83.62% in spleen, respectively). ALE exhibited minimal toxicity with selectivity index of 26.10 whereas ASE was observed to be non-toxic. The bioactive fractions revealed no hepato- and nephro-toxicity. ALE and ASE potentiated Th1-biased cell-mediated immunity along with upregulation of INF-γ, TNF-α and IL-2 and decline in IL-4 and IL-10 levels. GC-MS analysis revealed several compounds that may have contributed to the observed antileishmanial effect. CONCLUSION: Dual antileishmanial and immunostimulatory efficacy exhibited by the bioactive fractions merits their use alone or as adjunct therapy for VL.


Assuntos
Anti-Helmínticos/uso terapêutico , Apoptose , Azadirachta/química , Fatores Imunológicos/uso terapêutico , Leishmaniose/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células Th1/imunologia , Animais , Anti-Helmínticos/efeitos adversos , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Leishmania/citologia , Leishmania/efeitos dos fármacos , Leishmania/fisiologia , Leishmaniose/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Microscopia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sementes/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA