Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(1): e202200915, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36524294

RESUMO

In this study phytochemical compounds and antioxidant capacity, cytotoxic, antimicrobial and anti-biofilm activities of hydroethanolic extracts of five Cistus species (C. creticus L., C. laurifolius L., C. monspeliensis L., C. parviflorus Lam. and C. salviifolius L.) distributed in Turkey were investigated. (+)-catechin, epigallocatechin gallate, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside, luteolin were detected in different amounts. Strongest antioxidant capacities were observed with C. creticus, and C. parvifolius (0.476 and 0.452, respectively). Minimum inhibitory concentrations (MIC) of the extracts were determined between 32 and 128 µg/mL against different bacteria and Candida strains. C. monspeliensis and C. laurifolius extracts were inhibited the biofilm production levels of three Gram-negative bacteria (E. coli, S. enterica, P. aeruginosa), two Gram-positive bacteria (S. aureus, B. subtilis) and three Candida strains (C. albicans, C. parapsilosis, C. krusei). C. creticus extract showed strongest cytotoxic activity against human breast adenocarcinoma (MCF-7) and prostate cell lines (PC-3) (IC50 : 14.04±2.78 µg/mL and 34.04±2.74 µg/mL, respectively) among all plants tested.


Assuntos
Cistus , Extratos Vegetais , Masculino , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Cistus/química , Polifenóis/farmacologia , Turquia , Escherichia coli , Staphylococcus aureus , Candida
2.
Phytomedicine ; 57: 65-71, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30668324

RESUMO

BACKGROUND: Via its virulence factors such as swarm differentiation, biofilm and hemolysin production, urease enzyme, Proteus mirabilis causes urinary tract infections (UTIs), especially in complicated cases. Anti-pathogenic compounds attenuate the virulence of bacteria without showing 'cidal' activity and carry the potential to be used in the prevention and treatment of infectious diseases. PURPOSE: Search for anti-pathogenic effects of quercetin, which is a widely known and biologically active phytochemical, on Proteus mirabilis was the purpose of this study. In this context, the potential inhibitory activity of quercetin on swarming motility and biofilm production of a wild-type strain, P. mirabilis HI4320, was investigated in both phenotypically and genotypically. METHODS: Quercetin's effect on swarming motility was examined on LB agar plates, containing quercetin at various concentrations, by measuring the swarming diameter. The effect on biofilm formation, on the other hand, was analyzed by staining the formed biofilm of the bacterium, exposed to quercetin at various concentrations, with crystal violet and reading spectrophotometrically. Differences in expression levels of selected genes involved in swarming regulation were determined by real-time reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) to evaluate the mechanism of inhibitory action on swarming. Further investigations were carried out repeating swarming assays with the clones that derived from the wild-type strain by a TA system kit for direct one-step cloning and overexpressing the relevant genes. RESULTS: Our study revealed that quercetin inhibited swarming motility while activating biofilm production of P. mirabilis in direct proportion to the dose. Although all selected genes are inhibited in the same manner in liquid medium, and no significant differences could be detected in solid medium as demonstrated by RT-qPCR, experiments repeated with the clones overexpressing flhC (a component of flagellar transcriptional activator), speB (an agmatinase enzyme) and ompF (an outer membrane porin) genes showed that the respective clones could restore swarming, compensating for the inhibitory effect of quercetin. CONCLUSION: Quercetin's inhibitory effect on P. mirabilis swarming was possibly due to interactions with components of swarming regulators, the genes expressing polyamine coding enzymes that trigger swarm differentiation, or active pump proteins.


Assuntos
Antibacterianos/farmacologia , Proteus mirabilis/efeitos dos fármacos , Quercetina/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteus mirabilis/patogenicidade , Proteus mirabilis/fisiologia , Fatores de Virulência/antagonistas & inibidores
3.
Cancer Detect Prev ; 29(1): 54-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15734218

RESUMO

In this work, the protective effect of Vitamin E plus selenium (Vit E+Se) and melatonin against 7,12-dimethylbenz(a)anthracene (7,12-DMBA)-induced changes in superoxide dismutase (SOD), glutathione peroxidase (GSHPx), catalase (CAT) and carbonic anhydrase (CA) activities and malonedialdehyde (MDA) levels of mouse brain were compared. 12-month old mice were divided into four groups each including 10 animals. The first group served as control group. The second group was treated with 7,12-DMBA (20 mg/(kg day)). The third group was treated with 7,12-DMBA and Vitamin E (90 microg/(individual day)) and selenium (1.8 microg/(individual day)) simultaneously. The fourth group was treated with 7,12-DMBA and melatonin (4.2 mg/(kg day)) simultaneously. Treatment continued for 21 days after which the mice were sacrificed and brain homogenates were prepared. 7,12-DMBA treated group exhibited significantly decreased levels of brain SOD, GSHPx, CAT and CA activities and increased MDA levels as compared to control. Vitamin E+Se fully or partially restored enzyme inhibition except for SOD. Lipid peroxidation was also reduced in Vitamin E+Se treated group. Melatonin provided a better protection for SOD, GSHPx and CAT, and a plausible protection for CA activity. Protection against lipid peroxidation measured as MDA in melatonin treated group was appreciable although slightly lesser than the protection provided by Vitamin E+Se. The results imply that Vitamin E+Se and melatonin both provide chemoprevention against 7,12-DMBA-induced oxidative stress in mouse brain.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Antioxidantes/farmacologia , Encéfalo/patologia , Carcinógenos/toxicidade , Melatonina/farmacologia , Selênio/farmacologia , Vitamina E/farmacologia , 9,10-Dimetil-1,2-benzantraceno/administração & dosagem , Animais , Encéfalo/enzimologia , Anidrases Carbônicas/farmacologia , Carcinógenos/administração & dosagem , Catalase/farmacologia , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/farmacologia , Malondialdeído/análise , Camundongos , Estresse Oxidativo , Superóxido Dismutase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA