Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Parasitol ; 290: 109346, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418076

RESUMO

The current study investigated the synergistic effect of combinations containing deltamethrin (D), Eucalyptus essential oil (E), and the thyme essential oil component thymol (T), against a field population of Rhipicephalus annulatus in Egypt that was characterized to be resistant to D. Solutions of T, E, or TE at concentrations of 1.25-5% were combined with 5% deltamethrin at different dilutions (0.25-2 mL/L). Results of the adult immersion test used to estimate the in vitro acaricidal activity of these combinations at 5% yielded LC50 values for D, E-D, T-D, and TE-D of 3.87 mL/L, 3.89 mL/L, 0.14 mL/L, and 0.05 mL/L, respectively. Biochemical analyses using whole-body homogenate of ticks from the in vitro tests revealed that the lowest acetylcholinesterase and glutathione peroxidase activity, and the maximum lipid peroxidation were recorded in ticks treated with 5% TE-D. Glutathione content significantly decreased (p ≤ 0.05) in all treated ticks. Three groups, each containing five cross breed cattle naturally infested with R. annulatus from the same area where resistance to D was detected, were sprayed twice at two-week intervals using 1 mL/L of 5% solutions of D, T-D, or TE-D. Overall efficacy of the D, T-D, and TE-D sprays by day 30 post-treatment was 21.6, 88.3, and 95 %, respectively. Ticks collected from infested cattle three days after treatment with the D spray deposited egg masses that were able to hatch, deposited small masses of eggs unable to hatch when exposed to the T-D spray, and laid few eggs that didn't hatch when sprayed with the TE-D combination. Values for liver and kidney function parameters were comparable in cattle before and after treatment with the combination sprays tested. The TE-D spray overcame the insensitivity to D of this R. annulatus population in Egypt, which also highlighted the significant synergistic effect of thymol on the acaricidal activity of deltamethrin observed in vitro. Acaricidal activity of the TE-D combination apparently has deleterious effects on multiple tick systems involving inhibition of acetylcholinesterase, increased lipid peroxidation, and oxidative stress. These findings document that combinations of natural and synthetic products can be part of integrated management solutions to the problem with widespread resistance to pyrethroids like deltamethrin in populations of cattle ticks, including R. annulatus, around the world.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Óleo de Eucalipto/uso terapêutico , Nitrilas/uso terapêutico , Piretrinas/uso terapêutico , Rhipicephalus/efeitos dos fármacos , Timol/uso terapêutico , Acaricidas/uso terapêutico , Animais , Antioxidantes/metabolismo , Biomarcadores , Bovinos , Doenças dos Bovinos/parasitologia , Óleo de Eucalipto/química , Feminino , Nitrilas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Sinergistas de Praguicidas , Piretrinas/administração & dosagem , Timol/administração & dosagem , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/veterinária
2.
Pestic Biochem Physiol ; 141: 41-49, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28911739

RESUMO

The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Kir) channels, is overexpressed in the Drosophila salivary gland by 32-fold when compared to the whole body mRNA transcripts. Therefore, we aimed to test the hypothesis that pharmacological and genetic depletion of salivary gland specific Kir channels alters the efficiency of the gland and reduced feeding capabilities using the fruit fly Drosophila melanogaster as a model organism that could predict similar effects in arthropod disease vectors. Exposure to VU041, a selective Kir channel blocker, reduced the volume of sucrose consumption by up to 3.2-fold and was found to be concentration-dependent with an EC50 of 68µM. Importantly, the inactive analog, VU937, was shown to not influence feeding, suggesting the reduction in feeding observed with VU041 is due to Kir channel inhibition. Next, we performed a salivary gland specific knockdown of Kir1 to assess the role of these channels specifically in the salivary gland. The genetically depleted fruit flies had a reduction in total volume ingested and an increase in the time spent feeding, both suggestive of a reduction in salivary gland function. Furthermore, a compensatory mechanism appears to be present at day 1 of RNAi-treated fruit flies, and is likely to be the Na+-K+-2Cl- cotransporter and/or Na+-K+-ATPase pumps that serve to supplement the inward flow of K+ ions, which highlights the functional redundancy in control of ion flux in the salivary glands. These findings suggest that Kir channels likely provide, at least in part, a principal potassium conductance pathway in the Drosophila salivary gland that is required for sucrose feeding.


Assuntos
Proteínas de Drosophila/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glândulas Salivares/metabolismo , Ração Animal , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Inseticidas/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Salivares/efeitos dos fármacos , Açúcares
3.
Int J Parasitol Parasites Wildl ; 6(2): 100-107, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28580297

RESUMO

Cattle fever ticks (CFT), vectors of bovine babesiosis and anaplasmosis, were eradicated from the United States by 1943, but are frequently reintroduced from neighboring border states of Mexico via stray cattle and wildlife hosts including white-tailed deer (Odocoileus virginianus) (WTD) and nilgai antelope (Boselaphus tragocamelus). Nilgai antelope are exotic bovids from India that are hosts of CFT, have large home ranges as compared to WTD, thus have the potential to spread CFT through the landscape. Currently, there are no methods to control CFT on nilgai. Odor lures were evaluated to determine if nilgai could be attracted to a central point for development of control methods. Four treatments, nilgai offal a natural odor lure was used as the positive control; and compared to three artificial odors; screw worm lure, volatile fatty acids, citronella oil. Studies were conducted on a free-ranging population of nilgai at the East Foundation's Santa Rosa Ranch (Kenedy Co., near Riviera, Texas, USA). Game cameras were used to document visitation to the lures. In the ten randomly placed transects, 110 nilgai and 104 WTD were photographed. Offal had significantly more visits by nilgai (71% of total visits) than screwworm (15%), VFA (11%), and citronella (4%). For WTD, there was no significant difference in visitation at the lure treatments.

4.
Vet Parasitol ; 228: 60-64, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27692332

RESUMO

Plant-derived natural products can serve as an alternative to synthetic compounds for control of ticks of veterinary and medical importance. Lippia gracilis is an aromatic plant that produces essential oil with high content of carvacrol and thymol monoterpenes. These monoterpenes have high acaricidal activity against Rhipicephalus (Boophilus) microplus. However, there are no studies that show efficacy differences of essential oils between susceptible and organophosphate resistant strains of R. (B.) microplus. The aim of the present study was to compare acaricidal effects of essential oils extracted from two different genotypes of L. gracilis and the main monoterpenes on larvae of both susceptible and organophosphate resistant R. (B.) microplus larvae. The efficacy of the essential oil of two genotypes of L. gracilis (106 and 201) and their monoterpenes carvacrol and thymol was measured using the larval immersion test on coumaphos-resistant and susceptible strains of R. (B.) microplus. Lethal concentrations were calculated using GraphPad Prism 6.0. Chemical analysis was performed by GC-MS and FID. Thymol and carvacrol were observed to be major constituents in 106 and 201L. gracilis genotype essential oils, respectively. Essential oils of both genotypes were more effective against organophosphate-resistant tick strain than susceptible tick strain. Carvacrol was 3.2 times more toxic to organophosphate resistant strain than to susceptible strain. Thymol was equally toxic to resistant and susceptible tick strains. The significantly higher efficacy monoterpene carvacrol against resistant ticks may lead to development of new natural product acaricide formulations for use to control organophosphate resistant R. (B.) microplus populations.


Assuntos
Acaricidas/farmacologia , Lippia/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Rhipicephalus/efeitos dos fármacos , Acaricidas/química , Animais , Cimenos , Resistência a Medicamentos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/química , Organofosfatos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Óleos de Plantas/química , Timol/química , Timol/farmacologia
5.
Parasit Vectors ; 6: 31, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379291

RESUMO

BACKGROUND: Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. METHODS: A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3'-5'-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman's assay in microplates. RESULTS: A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P. papatasi AChE1 was expressed in the baculovirus system and characterized as an insect acetylcholinesterase with substrate preference for acetylthiocholine and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine, BW284c51, malaoxon, and paraoxon, and was insensitive to the butyrylcholinesterase inhibitors ethopropazine and iso-OMPA. CONCLUSIONS: Results presented here enable the screening and identification of PpAChE mutations resulting in the genotype for insensitive PpAChE. Use of the recombinant P. papatasi AChE1 will facilitate rapid in vitro screening to identify novel PpAChE inhibitors, and comparative studies on biochemical kinetics of inhibition.


Assuntos
Acetilcolinesterase/genética , Insetos Vetores/enzimologia , Leishmaniose/transmissão , Phlebotomus/enzimologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Inibidores da Colinesterase/farmacologia , DNA Complementar/química , DNA Complementar/genética , Feminino , Humanos , Insetos Vetores/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Cinética , Leishmaniose/parasitologia , Masculino , Dados de Sequência Molecular , Organofosfatos/farmacologia , Phlebotomus/genética , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Texas
6.
Chem Biol Interact ; 203(1): 319-22, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23036311

RESUMO

Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity.


Assuntos
Acetilcolinesterase/metabolismo , Dípteros/enzimologia , Carrapatos/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase/genética , Animais , Bovinos , Inibidores da Colinesterase/farmacologia , Dípteros/efeitos dos fármacos , Dípteros/genética , Resistência a Medicamentos , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Compostos Organofosforados/farmacologia , Filogenia , Carrapatos/efeitos dos fármacos , Carrapatos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA