Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203800

RESUMO

Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.


Assuntos
Doenças Musculoesqueléticas , Ácido Oleanólico/análogos & derivados , Álcool Feniletílico/análogos & derivados , Tendinopatia , Ratos , Animais , Ratos Wistar , Suplementos Nutricionais , Metabolismo dos Lipídeos , Tendinopatia/etiologia , Ácido Aspártico
2.
Molecules ; 27(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408740

RESUMO

There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.


Assuntos
Anti-Infecciosos , Antineoplásicos , Olea , Triterpenos , Animais , Antocianinas/análise , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Antineoplásicos/análise , Antioxidantes/química , Suplementos Nutricionais , Frutas/química , Olea/química , Azeite de Oliva/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Polifenóis/química , Triterpenos/análise , Triterpenos/farmacologia , Verduras
3.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947962

RESUMO

Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Olea/química , Olea/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triterpenos/química
4.
Fish Physiol Biochem ; 44(3): 911-918, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460183

RESUMO

The aim of the present study was to assess the impact of an acute handling stress on hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed diets differing in lipid so urce and carbohydrate content. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as lipid source and with 20 or 0% gelatinized starch as carbohydrate source. Triplicate groups of fish with 74 g were fed each diet during 13 weeks and then subjected to an acute handling stress. Stress exposure decreased hematocrit (Ht) and hemoglobin (Hb) levels. Independent of dietary treatment, stress exposure increased hepatic lipid peroxidation (LPO). Stressed fish exhibited lower glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and superoxide dismutase (SOD) activities, independent of previous nutritional history. In the VO groups, stress exposure increased glutathione peroxidase (GPX) activity. Diet composition had no effect on Ht and Hb levels. In contrast, dietary carbohydrate decreased hepatic LPO and CAT activity and increased glutathione reductase (GR) and G6PD activities. Dietary lipids had no effect on LPO. Fish fed the VO diets exhibited higher G6PD activity than fish fed the FO diets. In conclusion, dietary carbohydrates contributed to the reduction of oxidative stress in fish. However, under the imposed handling stress conditions, liver enzymatic antioxidant mechanisms were not enhanced, which may explain the overall increased oxidative stress.


Assuntos
Bass/metabolismo , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Óleos de Peixe/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Catalase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Superóxido Dismutase/metabolismo
5.
Phytomedicine ; 23(12): 1301-1311, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765349

RESUMO

BACKGROUND: Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE: Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS: Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS: MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION: MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Olea/química , Triterpenos/farmacologia , Células 3T3-L1 , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Glucose/metabolismo , Camundongos , PPAR gama/genética , RNA/biossíntese , RNA/genética , Triglicerídeos/metabolismo , Triterpenos/química
6.
Fish Physiol Biochem ; 42(5): 1417-25, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27129724

RESUMO

The aim of the present study was to investigate whether supplementary nucleotide "Optimun" mitigates the adverse effects of chronic overcrowding in Oncorhynchus mykiss. Two experimental diets [control and nucleotide-supplemented (0.2 %)] and two rearing densities (10 and 30 kg m(-3)) were combined to have four experimental treatments. The fish were reared for 45 days under different densities using different diets. At the end of the trial, FCR of the fish in higher density was significantly higher than those of the lower density. Nucleotide had no significant effects on growth performance and survival rate. Supplemented nucleotide significantly increased blood hematocrit, whereas it decreased serum total protein, total immunoglobulin (Ig) and creatinine. Overcrowding significantly increased serum glucose and total protein level and decreased serum lysozyme activity, but supplemented nucleotide produced no improvement in these items. No significant effect of overcrowding and dietary nucleotide was observed on serum cortisol. Supplemented nucleotide significantly increased serum urea under low stocking density. Overall, the results showed that 0.2 % "Optimun" had no positive effects on rainbow trout and also caused some immunological and metabolic problems. These findings are not in accordance with those obtained in the same species, with same nucleotide source and level, but acute stress; thus, further studies are encouraged on this topic.


Assuntos
Suplementos Nutricionais , Nucleotídeos/farmacologia , Oncorhynchus mykiss , Animais , Glicemia/análise , Proteínas Sanguíneas/análise , Creatinina/sangue , Proteínas de Peixes/sangue , Hematócrito , Hidrocortisona/sangue , Imunoglobulinas/sangue , Muramidase/sangue , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/imunologia , Densidade Demográfica , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia , Ureia/sangue
7.
Fish Physiol Biochem ; 42(1): 203-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26364216

RESUMO

The impact of replacing circa 70% fish oil (FO) by a vegetable oil (VO) blend (rapeseed, linseed, palm oils; 20:50:30) in diets for European sea bass juveniles (IBW 96 ± 0.8 g) was evaluated in terms of activities of digestive enzymes (amylase, lipase, alkaline phosphatase, trypsin and total alkaline proteases) in the anterior (AI) and posterior (PI) intestine and tissue morphology (pyloric caeca-PC, AI, PI, distal intestine-DI and liver). For that purpose, fish were fed the experimental diets for 36 days and then liver and intestine were sampled at 2, 6 and 24 h after the last meal. Alkaline protease characterization was also done in AI and PI at 6 h post-feeding. Dietary VO promoted higher alkaline phosphatase activity at 2 h post-feeding in the AI and at all sampling points in the PI. Total alkaline protease activity was higher at 6 h post-feeding in the PI of fish fed the FO diet. Identical number of bands was observed in zymograms of alkaline proteases of fish fed both diets. No alterations in the histomorphology of PC, AI, PI or DI were noticed in fish fed the VO diets, while in the liver a tendency towards increased hepatocyte vacuolization due to lipid accumulation was observed. Overall, and with the exception of a higher intestine alkaline phosphatase activity, 70% FO replacement by a VO blend in diets for European sea bass resulted in no distinctive alterations on the postprandial pattern of digestive enzyme activities and intestine histomorphology.


Assuntos
Bass , Gorduras na Dieta/farmacologia , Proteínas de Peixes/metabolismo , Hidrolases/metabolismo , Intestinos/enzimologia , Fígado/enzimologia , Animais , Ácidos Graxos Monoinsaturados , Óleos de Peixe/farmacologia , Intestinos/anatomia & histologia , Óleo de Semente do Linho/farmacologia , Fígado/patologia , Óleo de Palmeira , Óleos de Plantas/farmacologia , Período Pós-Prandial/fisiologia , Óleo de Brassica napus
8.
Br J Nutr ; 114(10): 1584-93, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26365262

RESUMO

This study aimed to evaluate the effects of dietary lipid source and carbohydrate content on the oxidative status of European sea bass (Dicentrarchus labrax) juveniles. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as the lipid source and with 20 or 0 % gelatinised starch as the carbohydrate source, in a 2×2 factorial design. Liver and intestine antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD)), hepatic and intestinal lipid peroxidation (LPO), as well as hepatic oxidative stress index (OSI), were measured in fish fed the experimental diets for 73 d (n 9 fish/diet). Carbohydrate-rich diets promoted a decrease in hepatic LPO and OSI, whereas the lipid source induced no changes. Inversely, dietary lipid source, but not dietary carbohydrate concentration, affected LPO in the intestine. Lower intestinal LPO was observed in VO groups. Enzymes responsive to dietary treatments were GR, G6PD and CAT in the liver and GR and GPX in the intestine. Dietary carbohydrate induced GR and G6PD activities and depressed CAT activity in the liver. GPX and GR activities were increased in the intestine of fish fed VO diets. Overall, effects of diet composition on oxidative status were tissue-related: the liver and intestine were strongly responsive to dietary carbohydrates and lipid sources, respectively. Furthermore, different metabolic routes were more active to deal with the oxidative stress in the two organs studied.


Assuntos
Bass/metabolismo , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Animais , Catalase/metabolismo , Óleos de Peixe/administração & dosagem , Glucosefosfato Desidrogenase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Oxirredução , Estresse Oxidativo , Óleos de Plantas/administração & dosagem , Amido/administração & dosagem , Superóxido Dismutase/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-26236377

RESUMO

Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.

10.
Br J Nutr ; 114(8): 1143-56, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26306559

RESUMO

Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.


Assuntos
Bass/metabolismo , Colesterol/sangue , Dieta/veterinária , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos , Ração Animal , Animais , Glicemia/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Óleos de Peixe/administração & dosagem , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Óleos de Plantas/administração & dosagem , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/administração & dosagem , Amido/química , Triglicerídeos/sangue , Regulação para Cima
11.
Artigo em Inglês | MEDLINE | ID: mdl-24462911

RESUMO

The effect of dietary incorporation of soy protein concentrate (SPC) and the concomitant supplementation with taurine on hepatic intermediary metabolism and antioxidant status of totoaba (Totoaba macdonaldi) juveniles was assessed. Four isoproteic and isolipidic diets were formulated containing either 30 or 60% of SPC (diets SP30 and SP60), supplemented or not with 1% of taurine (diets SP30T and SP60T). A fish meal (FM) based diet, without SPC and taurine supplementation, was used as a control. Triplicate groups of 32 totoaba juveniles (average body mass=7.5g) were fed these diets over 45days. Results revealed that dietary FM replacement by SPC depressed the overall intermediary metabolism. Activity of key enzymes of amino acid catabolism and gluconeogenesis was significantly reduced and a trend to reduce glycolysis and glucose-6-phosphate dehydrogenase activity was observed. The incorporation of the highest level of SPC also significantly increased hepatic lipid peroxidation and the activity of superoxide dismutase. Concomitant taurine supplementation restored the activity of amino acid catabolic and gluconeogenic enzymes and hexokinase to levels similar of those of the control diet. Taurine supplementation also led to a significant increase of glucose-6-phosphate dehydrogenase and catalase activity, as well as to a significant reduction of liver lipid peroxidation. These results suggest that taurine may play an important metabolic modulation action on totoaba fed SPC based diets, contributing to the enhancement of the overall metabolism and to the reduction of liver oxidative damage.


Assuntos
Antioxidantes/metabolismo , Fígado/metabolismo , Perciformes/metabolismo , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas de Soja/administração & dosagem , Taurina/administração & dosagem , Animais , Dieta , Gluconeogênese , Glicólise , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Fenômenos Fisiológicos da Nutrição , Oxirredução
12.
Fish Physiol Biochem ; 39(3): 661-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23053611

RESUMO

A growth trial was performed with gilthead sea bream juveniles (Sparus aurata) to evaluate the effect of diet supplementation with white tea and methionine on fish performance and lipid metabolism. For that purpose, four diets were formulated: a fish meal-based diet (Control) and diets identical to the control diet but supplemented with 2.9 % white tea (Tea), 0.3 % methionine (Met) or 2.9 % white tea plus 0.3 % methionine (Tea + Met). Growth performance and feed efficiency parameters, whole-body and liver composition, plasma metabolites concentration and liver glucose 6-phosphate dehydrogenase (G6PDH), malic enzyme (ME) and fatty acid synthetase (FAS) activities were determined. Feed intake was higher in fish fed methionine-supplemented diets, whereas this parameter and growth was decreased in fish fed white tea supplementation. Feed efficiency and protein efficiency ratio were not affected by diet composition. Plasma HDL cholesterol and total lipids concentration were higher in fish fed white tea-supplemented diets. Whole-body lipid, plasma glucose, liver glycogen concentration and liver G6PDH, ME and FAS activities were lower in fish fed white tea-supplemented diets. Results of the present study indicate that methionine seems to act as a feed attractant in diets for sea bream juveniles. Additionally, white tea is an important modulator of lipid metabolism in sea bream juveniles.


Assuntos
Suplementos Nutricionais , Metabolismo dos Lipídeos/efeitos dos fármacos , Metionina/farmacologia , Preparações de Plantas/farmacologia , Dourada/metabolismo , Animais , Aquicultura/métodos , Composição Corporal/efeitos dos fármacos , HDL-Colesterol/sangue , Ingestão de Alimentos/efeitos dos fármacos , Ácido Graxo Sintases/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Fígado/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Dourada/crescimento & desenvolvimento , Chá
13.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(3): 506-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227440

RESUMO

The present study evaluates the influence of previous nutritional status, fish fed on diets supplemented with tea and methionine, on acute hypoxia tolerance and subsequent recovery of Sparus aurata juveniles. Four isonitrogenous (45% of protein) and isolipidic (18% lipid) diets were formulated to contain 0.3% methionine, 2.9% white tea dry leaves or 2.9% of white tea dry leaves+0.3% methionine. An unsupplemented diet was used as control. Hepatic key enzymes of intermediary metabolism and antioxidant status, superoxide dismutase isoenzyme profile, glutathione (total, reduced and oxidized) and oxidative damage markers were determined under normoxia, hypoxia challenge and during normoxia recovery. Dietary white tea inclusion decreased plasma glucose levels under normoxia and seemed to induce an increase in anaerobic pathways as showed by enhanced liver lactate dehydrogenase activity. Hypoxia challenge reversed some of the responses induced by diet tea supplementation. Hypoxia decreased plasma glucose levels, increased glucose 6-P-dehydrogeanse activity, decreased superoxide dismutase activity (especially Mn-SOD and CuZn-SOD isoforms) and increased glutathione peroxidase activity in all dietary treatments. Catalase activity during hypoxia varied with dietary treatments and glutathione reductase was not modified. Antioxidant defenses were insufficient to avoid an oxidative stress condition under hypoxia, independently of dietary treatment. In general, pre-challenge values were recovered for almost all parameters within 6 h recovery time.


Assuntos
Suplementos Nutricionais , Hipóxia , Metionina/metabolismo , Dourada/metabolismo , Chá/metabolismo , Animais , Antioxidantes/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Catalase/metabolismo , Dieta/veterinária , Ativação Enzimática , Ensaios Enzimáticos , Glucosefosfato Desidrogenase/metabolismo , Glutationa Peroxidase/metabolismo , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/enzimologia , Oxirredução , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fatores de Tempo
14.
Br J Nutr ; 108(7): 1202-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22153060

RESUMO

Free radicals are continuously generated during an organism's lifetime. In order to understand the involvement in the oxidative status of fish, methionine and white tea were assayed as antioxidant supplements in diets for gilthead sea bream (Sparus aurata). For the purpose of this study, four isonitrogenous and isolipidic diets were formulated to contain 45 % of protein and 18 % lipid and 0·3 % methionine (Met diet), 2·9 % white tea dry leaves (Tea diet) and 2·9 % of white tea dry leaves + 0·3 % methionine (Tea + Met diet). An unsupplemented diet was used as the control. Key enzymatic antioxidant defences, superoxide dismutase (SOD) isoenzyme profile, total, reduced and oxidised glutathione and oxidative damage markers were determined. The results showed that dietary methionine supplementation increased liver SOD activity, while white tea induced higher hepatic catalase activity. Dietary white tea induced a notable increase in Mn-SOD isoenzyme. This is the first study to provide evidence that dietary tea inclusion in fish feeding could be an important source of Mn with metabolic repercussions on antioxidant mechanisms.


Assuntos
Ração Animal/análise , Metionina/uso terapêutico , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Dourada/crescimento & desenvolvimento , Chá/química , Ração Animal/efeitos adversos , Animais , Aquicultura , Biomarcadores/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Isoenzimas/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Manganês/efeitos adversos , Manganês/uso terapêutico , Metionina/efeitos adversos , Oxirredução , Pigmentação , Extratos Vegetais/efeitos adversos , Dourada/metabolismo , Superóxido Dismutase/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA