Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochemistry ; 217: 113929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984589

RESUMO

Eleven previously undescribed Amaryllidaceae alkaloids, crinalatifolines A-K (1-11), and two first naturally occurring alkaloids, dihydroambelline (12) and N-demethyldihydrogalanthamine (13), were isolated from the bulbs of Crinum latifolium L. Additionally, thirty-seven known alkaloids and one alkaloid artifact were also isolated from this plant species. Their structures and absolute configurations were elucidated using extensive spectroscopic techniques, including IR, NMR, MS, and ECD. Evaluations of the cholinesterase inhibitory activities of most of these compounds were conducted. Among the tested compounds, ungeremine exhibited the highest potency against acetylcholinesterase and butyrylcholinesterase, with the IC50 values of 0.10 and 1.21 µM, respectively. These values were 9.4- and 2.4-fold more potent than the reference drug galanthamine.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Crinum , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Crinum/química , Butirilcolinesterase , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813201

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Apoptose , Gencitabina , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB
3.
Inflammopharmacology ; 31(1): 529-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580158

RESUMO

The anti-inflammatory actions of phytochemicals have attracted much attention due to the current state of numerous inflammatory disorders. Thai traditional medicine uses Maclura cochinchinensis (Lour.) Corner to treat chronic fever and various inflammatory diseases, as well as to maintain normal lymphatic function. Five flavonoids and five xanthones were isolated from the heartwood of M. cochinchinensis and we investigated the anti-inflammatory properties of the isolated compounds. All isolated compounds possessed an anti-inflammatory effect by decreasing prostaglandin E2 (PGE2) synthesis in lipopolysaccharide (LPS)-activated murine macrophages with varying degrees of potency. The greatest decrease in M1 inflammatory mediators, nitric oxide, PGE2, and proinflammatory cytokines was observed with 1,3,7-trihydroxyxanthone and 1,3,5-trihydroxyxanthone treatment of LPS-activated macrophages. The anti-inflammatory mechanism of the two xanthones is mediated by the suppression of inducible nitric oxide synthase, cyclooxygenase-2, and phosphatidylinositol 3-kinase/protein kinase B expression and the upregulation of M2 anti-inflammatory signalling proteins phosphorylated signal transducer and activator of transcription 6 and peroxisome proliferator-activated receptors-γ. 1,3,7-Trihydroxyxanthone exhibits superior induction of anti-inflammatory M2 mediator of LPS-activated macrophages by upregulating arginase1 expression. Following the resolution of inflammation, the two xanthones enhanced surface TLR4 expression compared to LPS-stimulated cells, possibly preserving macrophage function. Our research highlights the role of the two xanthones in modulating the M1/M2 macrophage polarisation to reduce inflammation and retain surface TLR4 once inflammation has been resolved. These findings support the use of xanthones for their anti-inflammatory effects in treating inflammatory dysregulation.


Assuntos
Maclura , Xantonas , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Maclura/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Citocinas/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Xantonas/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
4.
Front Pharmacol ; 13: 980066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120300

RESUMO

The demand for the production of herbal extracts for cosmetics, food, and health supplements, known as plant-based medicine, is rising globally. Incorporating herbal extracts could help to create higher value products due to the functional properties of bioactive compounds. Because the phytochemical composition could vary depending on the processing methods, a simple bioassay of herbal bioactive compounds is an important screening method for the purposes of functional characterization and quality assurance. As a simplified eukaryotic model, yeast serves as a versatile tool to examine functional property of bioactive compounds and to gain better understanding of fundamental cellular processes, because they share similarities with the processes in humans. In fact, aging is a well-conserved phenomenon between yeast and humans, making yeast a powerful genetic tool to examine functional properties of key compounds obtained from plant extracts. This study aimed to apply a well-established model yeast, Saccharomyces cerevisiae, to examine the antioxidant and anti-aging potential of flavonoids, extracted from medicinal plants, and to gain insight into yeast cell adaptation to oxidative stress. Some natural quercetin analogs, including morin, kaempferol, aromadendrin, and steppogenin, protected yeast cells against oxidative stress induced by acetic acid, as shown by decreased cell sensitivity. There was also a reduction in intracellular reactive oxygen species following acetic acid treatment. Using the chronological aging assay, quercetin, morin, and steppogenin could extend the lifespan of wild-type S. cerevisiae by 15%-25%. Consistent with the fact that oxidative stress is a key factor to aging, acetic acid resistance was associated with increased gene expression of TOR1, which encodes a key growth signaling kinase, and MSN2 and MSN4, which encode stress-responsive transcription factors. The addition of the antioxidant morin could counteract this increased expression, suggesting a possible modulatory role in cell signaling and the stress response of yeast. Therefore, yeast represents a versatile model organism and rapid screening tool to discover potentially rejuvenescent molecules with anti-aging and anti-oxidant potential from natural resources and to advance knowledge in the molecular study of stress and aging.

5.
Phytomedicine ; 98: 153925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104759

RESUMO

BACKGROUND: Festidinol is a flavan-3-ol which has been shown to reduce advanced glycation end products (AGEs) and reactive oxygen species, both of which play a crucial role in the pathology of many neurodegenerative diseases. PURPOSE: This study aimed to investigate the effects of festidinol on oxidative stress, amyloidogenesis, phosphorylated tau (pTau) expression, synaptic function, and cognitive impairment, and the potential mechanisms involved, in a mouse model with an Alzheimer-like pathology. METHODS: D-galactose (150 mg/kg) and aluminum chloride (10 mg/kg) were injected intraperitoneally into 40 mice for 90 days to generate an AD mouse model with cognitive impairment. Festidinol (30 mg/kg) and donepezil (5 mg/kg) were then administered orally for 90 days after which behavior and molecular changes in the brain were measured. RESULTS: The aluminum accumulated and the expression of the cell senescence marker P16 increased after exposure to D-galactose and AlCl3 (2.5 ± 0.5 mg/kg, 149.1 ± 28.1% of control, respectively). Festidinol markedly decreased the escape latency (8.7 ± 4.3 s) and increased the number of platform crossings (8 ± 1.4 time) in the Morris water maze test. Superoxide dismutase activity was significantly elevated after festidinol administration, however there were significant reductions in the levels of 4­hydroxy-2-nonenal, receptor for advanced glycation end products, phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (pNF-κB), and nuclear factor of activated T cells 1 (NFAT1). Festidinol attenuated amyloid beta production by reducing the mRNA of beta-site APP cleaving enzyme 1 (BACE1). Festidinol also significantly decreased the expression of pTau and phosphorylated glycogen synthase kinase 3 (148.6 ± 37.6% of control, 125.3 ± 22.6% of control, respectively). CONCLUSION: Festidinol can ameliorate learning and memory impairments by modulating amyloidogenesis, tau hyperphosphorylation, cholinergic activity, neuroinflammation, and oxidative stress, and by regulating the brain-derived neurotrophic factor signaling pathway.

6.
Bioorg Chem ; 110: 104799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730671

RESUMO

The isopimarane diterpene, 1α,11α-dihydroxyisopimara-8(14),15-diene (1), is the major constituents from the rhizomes of Kaempferia marginata (Zingiberaceae), a Thai medicinal plant. The microbial transformation of parent compound 1 by the fungus Cunninghamella echinulata NRRL 1386 gave five new metabolites, 7α,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (2), 3ß,7α,11α-trihydroxy-1-oxoisopimara-8(14),15-diene (3), 7ß,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (4), 7α-hydroxy-1,11-dioxoisopimara-8(14),15-diene (5) and 1α,7ß,11α-trihydroxyisopimara-8(14),15-diene (6), together with three known metabolites, 7-9. The structures of the new metabolites were elucidated by spectroscopic techniques. The known compounds were identified by comparison of the spectroscopic and physical data with those of reported values. The parent compound 1 and the metabolites have been neuroprotective activities evaluated against Aß25-35-induced damage in human neuroblastoma cells (SK-N-SH). Among them, compounds 1-3, 5 and 7-9 had significant neuroprotective activities at a concentration of 2.5 µM. The results demonstrated that these compounds might be worth for further development into therapeutic agents for the treatment of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Biotransformação , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Zingiberaceae/química , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA