RESUMO
Biotechnological advancements require the physicochemical alteration of molecules to enhance their biological efficacy for the effective treatment of gastric ulcers. The study aimed to produce a polyelectrolytic compound from red angico gum (AG) by carboxymethylation, evaluate its physicochemical characteristics and investigate gastric protection against ethanol-induced ulcers. AG and carboxymethylated angico gum (CAG) were characterized by Fourier transform infrared spectroscopy, determination of the degree of substitution and gel permeation chromatography (GPC) and 13C NMR techniques. The results demonstrated that the modification of the polymer was satisfactory, presenting conformational changes e improving the interaction with the gastric mucosa. AG and CAG reduced macroscopic and microscopic damage such as edema, hemorrhage and cell loss caused by exposure of the mucosa to alcohol. Both demonstrated antioxidant activity in vitro, and in vivo, pretreatment with gums led to the restoration of superoxide dismutase and glutathione levels compared to the injured group. Concurrently, the levels of malondialdehyde and nitrite decreased. Atomic force microscopy showed that CAG presented better conformational properties of affinity and protection with the gastric mucosa compared to AG in the acidic pH. Based on our findings, it is suggested that this compound holds promise as a prospective product for future biotechnological applications.
Assuntos
Colubrina , Fabaceae , Úlcera Gástrica , Estudos Prospectivos , Estômago , Antioxidantes/efeitos adversos , Mucosa Gástrica , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Extratos Vegetais/químicaRESUMO
The aim of this study was to evaluate the effects of glutamine supplementation or exercise on gastric emptying and intestinal inflammation in rats with ulcerative colitis (UC). Strength exercise consisted of jump training 4 × 10 repetitions/5 days a week/8 weeks with progressive overload. Endurance exercise consisted of swimming without overload for a period of 1 h a day/5 days a week/8 weeks. Another group (sedentary) of animals was supplemented with L-glutamine (1 g/kg of body weight) orally for 8 weeks before induction of UC. Colitis was induced by intra-colonic administration of 1 mL of 4% acetic acid. We assessed gastric emptying, macroscopic and microscopic scoring, oxidative stress markers, and IL-1ß, IL-6, and (TNF-α) levels. The UC significantly increased (p < 0.05) the gastric emptying compared with the saline control group. We observed a significantly decrease (p < 0.05) in body weight gain in UC rats compared with the control groups. Both exercise interventions and L-glutamine supplementation significantly prevented (p < 0.05) weight loss compared with the UC group. Strength and endurance exercises significantly prevented (p < 0.05) the increase of microscopic scores and oxidative stress (p < 0.05). L-glutamine supplementation in UC rats prevented hemorrhagic damage and improved oxidative stress markers (p < 0.05). Strength and endurance exercises and glutamine decreased the concentrations of inflammatory cytokines IL-1ß, IL-6, and TNF-α compared with the UC group (p < 0.05). Strength and endurance exercises and L-glutamine supplementation prevented intestinal inflammation and improved cytokines and oxidative stress levels without altering gastric dysmotility in rats with UC.