Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754150

RESUMO

Background: Iron deficiency may impair adaptive immunity and is common among African infants at time of vaccination. Whether iron deficiency impairs vaccine response and whether iron supplementation improves humoral vaccine response is uncertain. Methods: We performed two studies in southern coastal Kenya. In a birth cohort study, we followed infants to age 18 mo and assessed whether anemia or iron deficiency at time of vaccination predicted vaccine response to three-valent oral polio, diphtheria-tetanus-whole cell pertussis-Haemophilus influenzae type b vaccine, ten-valent pneumococcal-conjugate vaccine and measles vaccine. Primary outcomes were anti-vaccine-IgG and seroconversion at age 24 wk and 18 mo. In a randomized trial cohort follow-up, children received a micronutrient powder (MNP) with 5 mg iron daily or a MNP without iron for 4 mo starting at age 7.5 mo and received measles vaccine at 9 and 18 mo; primary outcomes were anti-measles IgG, seroconversion and avidity at age 11.5 mo and 4.5 y. Findings: In the birth cohort study, 573 infants were enrolled and 303 completed the study. Controlling for sex, birthweight, anthropometric indices and maternal antibodies, hemoglobin at time of vaccination was the strongest positive predictor of: (A) anti-diphtheria and anti-pertussis-IgG at 24 wk (p = 0.0071, p = 0.0339) and 18 mo (p = 0.0182, p = 0.0360); (B) anti-pertussis filamentous hemagglutinin-IgG at 24 wk (p = 0.0423); and (C) anti-pneumococcus 19 IgG at 18 mo (p = 0.0129). Anemia and serum transferrin receptor at time of vaccination were the strongest predictors of seroconversion against diphtheria (p = 0.0484, p = 0.0439) and pneumococcus 19 at 18 mo (p = 0.0199, p = 0.0327). In the randomized trial, 155 infants were recruited, 127 and 88 were assessed at age 11.5 mo and 4.5 y. Compared to infants that did not receive iron, those who received iron at time of vaccination had higher anti-measles-IgG (p = 0.0415), seroconversion (p = 0.0531) and IgG avidity (p = 0.0425) at 11.5 mo. Interpretation: In Kenyan infants, anemia and iron deficiency at time of vaccination predict decreased response to diphtheria, pertussis and pneumococcal vaccines. Primary response to measles vaccine may be increased by iron supplementation at time of vaccination. These findings argue that correction of iron deficiency during early infancy may improve vaccine response.


Assuntos
Anemia Ferropriva/imunologia , Suplementos Nutricionais , Ferro/administração & dosagem , Vacinas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Pré-Escolar , Estudos de Coortes , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Vacinação
2.
Am J Clin Nutr ; 112(4): 1132-1141, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32678434

RESUMO

BACKGROUND: In adults, oral iron doses increase plasma hepcidin (PHep) for 24 h, but not for 48 h, and there is a circadian increase in PHep over the day. Because high PHep decreases fractional iron absorption (FIA), alternate day iron dosing in the morning may be preferable to consecutive day dosing. Whether these effects occur in infants is uncertain. OBJECTIVE: Using stable iron isotopes in Kenyan infants, we compared FIA from morning and afternoon doses and from consecutive, alternate (every second day) and every third day iron doses. METHODS: In prospective studies, we measured and compared FIA and the PHep response from 1) meals fortified with a 12-mg iron micronutrient powder given in the morning or afternoon (n = 22); 2) the same given on consecutive or alternate days (n = 21); and 3) a 12-mg iron supplement given on alternate days or every third day (n = 24). RESULTS: In total, 65.7% of infants were anemic. In study 1, PHep did not differ between morning and afternoon (P = 0.072), and geometric mean FIA[-SD, +SD](%) did not differ between the morning and afternoon doses [15.9 (8.9, 28.6) and 16.1 (8.7, 29.8), P = 0.877]. In study 2, PHep was increased 24 h after oral iron (P = 0.014), and mean FIA [±SD](%) from the baseline dose [23.3 (10.9)] was greater than that from the consecutive day dose (at 24 h) [20.1 (10.4); P = 0.042] but did not differ from the alternate day dose (at 48 h) [20.9 (13.4); P = 0.145]. In study 3, PHep was not increased 48 and 72 h after oral iron (P = 0.384), and the geometric mean FIA[-SD, +SD](%) from doses given at baseline, alternate days, and every third day did not differ [12.7 (7.3, 21.9), 13.8 (7.8, 24.2), and 14.8 (8.8, 24.8), respectively; P = 0.080]. CONCLUSIONS: In Kenyan infants given 12 mg oral iron, morning and afternoon doses are comparably absorbed, dosing on consecutive days increases PHep and modestly decreases iron absorption compared with alternate day dosing, and dosing on alternate days or every third day does not increase PHep or decrease absorption. This trial was registered at clinicaltrials.gov as NCT02989311 and NCT03617575.


Assuntos
Hepcidinas/sangue , Ferro/administração & dosagem , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Estudos Cross-Over , Esquema de Medicação , Feminino , Humanos , Lactente , Ferro/farmacocinética , Masculino , Estudos Prospectivos , Método Simples-Cego
3.
Nutrients ; 11(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671757

RESUMO

There is little data on human milk oligosaccharide (HMO) composition in Sub-Saharan Africa. Iron fortificants adversely affect the infant gut microbiota, while co-provision of prebiotic galacto-oligosaccharides (GOS) mitigates most of the adverse effects. Whether variations in maternal HMO profile can influence the infant response to iron and/or GOS fortificants is unknown. The aim of this study was to determine HMO profiles and the secretor/non-secretor phenotype of lactating Kenyan mothers and investigate their effects on the maternal and infant gut microbiota, and on the infant response to a fortification intervention with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) and 7.5 g GOS. We studied mother-infant pairs (n = 80) participating in a 4-month intervention trial in which the infants (aged 6.5-9.5 months) received daily a micronutrient powder without iron, with iron or with iron and GOS. We assessed: (1) maternal secretor status and HMO composition; (2) effects of secretor status on the maternal and infant gut microbiota in a cross-sectional analysis at baseline of the intervention trial; and (3) interactions between secretor status and intervention groups during the intervention trial on the infant gut microbiota, gut inflammation, iron status, growth and infectious morbidity. Secretor prevalence was 72% and HMOs differed between secretors and non-secretors and over time of lactation. Secretor status did not predict the baseline composition of the maternal and infant gut microbiota. There was a secretor-status-by-intervention-group interaction on Bifidobacterium (p = 0.021), Z-scores for length-for-age (p = 0.022) and weight-for-age (p = 0.018), and soluble transferrin receptor (p = 0.041). In the no iron group, longitudinal prevalence of diarrhea was higher among infants of non-secretors (23.8%) than of secretors (10.4%) (p = 0.001). In conclusion, HMO profile may modulate the infant gut microbiota response to fortificant iron; compared to infants of secretor mothers, infants of non-secretor mothers may be more vulnerable to the adverse effect of iron but also benefit more from the co-provision of GOS.


Assuntos
Suplementos Nutricionais , Ferro/administração & dosagem , Micronutrientes/administração & dosagem , Leite Humano/química , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Adulto , Bactérias/classificação , Bactérias/genética , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Ferro/metabolismo , Quênia , Masculino , Micronutrientes/química , Mães , Oligossacarídeos/classificação , Oligossacarídeos/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Adulto Jovem
4.
Am J Clin Nutr ; 106(Suppl 6): 1688S-1693S, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29070552

RESUMO

In infants and young children in Sub-Saharan Africa, iron-deficiency anemia (IDA) is common, and many complementary foods are low in bioavailable iron. In-home fortification of complementary foods using iron-containing micronutrient powders (MNPs) and oral iron supplementation are both effective strategies to increase iron intakes and reduce IDA at this age. However, these interventions produce large increases in colonic iron because the absorption of their high iron dose (≥12.5 mg) is typically <20%. We reviewed studies in infants and young children on the effects of iron supplements and iron fortification with MNPs on the gut microbiome and diarrhea. Iron-containing MNPs and iron supplements can modestly increase diarrhea risk, and in vitro and in vivo studies have suggested that this occurs because increases in colonic iron adversely affect the gut microbiome in that they decrease abundances of beneficial barrier commensal gut bacteria (e.g., bifidobacteria and lactobacilli) and increase the abundance of enterobacteria including entropathogenic Escherichia coli These changes are associated with increased gut inflammation. Therefore, safer formulations of iron-containing supplements and MNPs are needed. To improve MNP safety, the iron dose of these formulations should be reduced while maximizing absorption to retain efficacy. Also, the addition of prebiotics to MNPs is a promising approach to mitigate the adverse effects of iron on the infant gut.


Assuntos
Diarreia/tratamento farmacológico , Suplementos Nutricionais , Alimentos Fortificados , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/administração & dosagem , África Subsaariana/epidemiologia , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Pré-Escolar , Diarreia/sangue , Humanos , Incidência , Lactente , Ferro/sangue , Deficiências de Ferro , Micronutrientes/administração & dosagem , Micronutrientes/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Am J Clin Nutr ; 106(4): 1020-1031, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28814396

RESUMO

Background: Whether consumption of prebiotics increases iron absorption in infants is unclear.Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants.Design: Infants (n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57FeFum+Na58FeEDTA or ferrous sulfate (54FeSO4). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models.Results: There was a significant group-by-compound interaction on iron absorption (P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, (P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively (P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA (P = 0.047) in the Fe+GOS group but not from the FeSO4 (P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. (P = 0.008) and Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.018); Lactobacillus/Pediococcus/Leuconostoc spp. decreased in the Fe group (P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group (P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH (P < 0.001) and positively correlated with Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.001).Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417.


Assuntos
Compostos Férricos/sangue , Compostos Ferrosos/sangue , Alimentos Fortificados , Absorção Intestinal/efeitos dos fármacos , Ferro/sangue , Oligossacarídeos/farmacologia , Prebióticos , Anemia Ferropriva/sangue , Anemia Ferropriva/prevenção & controle , Bactérias/crescimento & desenvolvimento , Disponibilidade Biológica , Dieta , Ácido Edético/sangue , Eritrócitos/metabolismo , Feminino , Galactose/farmacologia , Humanos , Lactente , Ferro/farmacocinética , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacocinética , Isótopos , Quênia , Masculino , Micronutrientes , Oligoelementos/sangue , Oligoelementos/farmacocinética , Zea mays
6.
Matern Child Nutr ; 13(4)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27896919

RESUMO

The prevalence of iron-deficiency anemia (IDA) is high in infants in Sub-Saharan Africa. Exclusive breastfeeding of infants to 6 months of age is recommended by the World Health Organization, but breast milk is low in iron. Some studies suggest exclusive breastfeeding, although beneficial for the infant, may increase risk for IDA in resource-limited settings. The objective of this study was to determine if duration of exclusive breastfeeding is associated with anemia and iron deficiency in rural Kenyan infants. This was a cross-sectional study of 6-10-month-old infants (n = 134) in southern coastal Kenya. Anthropometrics, hemoglobin (Hb), plasma ferritin (PF), soluble transferrin receptor (sTfR), and C-reactive protein were measured. Body iron stores were calculated from the sTfR/PF ratio. Socioeconomic factors, duration of exclusive breastfeeding, nature of complementary diet, and demographic characteristics were determined using a questionnaire. Mean ± SD age of the infants was 7.7 ± 0.8 months. Prevalence of anemia, ID, and IDA were 74.6%, 82.1%, and 64.9%, respectively. Months of exclusive breastfeeding correlated positively with Hb (r = 0.187; p < .05) and negatively with sTfR (r = -0.246; p < .05). sTfR concentrations were lower in infants exclusively breastfed at least 6 months compared with those exclusively breastfed for less than 6 months (7.6 (6.3, 9) vs. 8.9 (6.7, 13.4); p < .05). Controlling for gender, birth weight, and inflammation, months spent exclusively breastfeeding was a significant negative predictor of sTfR and a positive predictor of Hb (p < .05). The IDA prevalence in rural Kenyan infants is high, and greater duration of exclusive breastfeeding predicts better iron status and higher Hb in this age group.


Assuntos
Anemia Ferropriva/epidemiologia , Aleitamento Materno , Ferro/sangue , População Rural , Anemia Ferropriva/sangue , Proteína C-Reativa/metabolismo , Estudos Transversais , Feminino , Ferritinas/sangue , Hemoglobinas/metabolismo , Humanos , Lactente , Quênia/epidemiologia , Masculino , Prevalência , Receptores da Transferrina/sangue , Fatores de Tempo
7.
Nutrients ; 8(8)2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529276

RESUMO

Iron deficiency anemia (IDA) is common among infants and children in Sub-Saharan Africa and is a leading contributor to the global burden of disease, as well as a hindrance to national development. In-home iron fortification of complementary foods using micronutrient powders (MNPs) effectively reduces the risk for IDA by ensuring that the iron needs of infants and young children are met without changing their traditional diet. However, the iron dose delivered by MNPs is high, and comparable on a mg iron per kg body weight to the supplemental doses (2 mg/kg) typically given to older children, which increases diarrhea risk. In controlled studies, iron-containing MNPs modestly increase risk for diarrhea in infants; in some cases, the diarrhea is severe and may require hospitalization. Recent in vitro and in vivo studies provide insights into the mechanism of this effect. Provision of iron fortificants to school-age children and iron-containing MNPs to weaning infants decreases the number of beneficial 'barrier' commensal gut bacteria (e.g., bifidobacteria), increases the enterobacteria to bifidobacteria ratio and abundances of opportunistic pathogens (e.g., pathogenic Escherichia coli), and induces gut inflammation. Thus, although iron-containing MNPs are highly effective in reducing IDA, they may increase gastrointestinal morbidity in infants, and safer formulations are needed.


Assuntos
Diarreia/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/efeitos adversos , Micronutrientes/efeitos adversos , Oligoelementos/efeitos adversos , Anemia Ferropriva/prevenção & controle , Criança , Pré-Escolar , Países em Desenvolvimento , Suplementos Nutricionais/efeitos adversos , Alimentos Fortificados/efeitos adversos , Humanos , Lactente , Inflamação/induzido quimicamente , Ferro/administração & dosagem , Micronutrientes/administração & dosagem , Pobreza , Oligoelementos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA