Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36748542

RESUMO

An actinobacterial strain, designated A5X3R13T, was isolated from a compost soil suspension supplemented with extracellular material from a Micrococcus luteus-culture supernatant. The strain was cultured on tenfold-diluted reasoner's 2A agar. The cells were ovoid-to-rod shaped, non-motile, Gram-stain-positive, oxidase-negative, catalase-positive and had a width of 0.5 µm and a length of 0.8-1.2 µm. The results of both 16S rRNA-based phylogenetic and whole-genome analyses indicate that A5X3R13T forms a distinct lineage within the family Nocardioidaceae (order Propionibacteriales). On the basis of the 16S rRNA gene sequence, A5X3R13T was closely related to Aeromicrobium terrae CC-CFT486T (96.2 %), Nocardioides iriomotensis IR27-S3T (96.2 %), Nocardioides guangzhouensis 130T (95.6 %), Marmoricola caldifontis YIM 730233T (95.5 %), Aeromicrobium alkaliterrae KSL-107T (95.4 %), Aeromicrobium choanae 9H-4T (95.4 %), Aeromicrobium panaciterrae Gsoil 161T (95.3 %), and Nocardioides jensenii NBRC 14755T (95.2 %). The genome had a length of 4 915 757 bp, and its DNA G+C content was 68.5 mol %. The main fatty acids were 10-methyl C17 : 0, C16 : 0, C15 : 0, C18 : 0, C17 : 0 and iso-C16 : 0. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. MK-9(H4) was the predominant respiratory quinone. The peptidoglycan type was A3γ (A41.1) and contained alanine, glycine, glutamic acid and ll-diaminopimelic acid in a molar ratio of 1.2 : 0.9 : 1.0 : 0.8. On the basis of the results of the phylogenetic and phenotypic analyses and comparisons with other members of the family Nocardioidaceae, strain A5X3R13T is proposed to represent a novel species within a novel genus, for which the name Solicola gregarius gen. nov., sp. nov. is proposed. The type strain is A5X3R13T (=DSM 112953T=NCCB 100840T).


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Micrococcus luteus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Microbiologia do Solo
2.
Microbiol Spectr ; 10(5): e0199522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000901

RESUMO

Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.


Assuntos
Rádio (Elemento) , Radônio , Urânio , Humanos , Adolescente , Filogenia , Água , Peróxido de Hidrogênio , Prata , Vitamina K 3 , Bactérias , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA