Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Opin Nephrol Hypertens ; 33(4): 441-446, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639736

RESUMO

PURPOSE OF REVIEW: Salt-sensitive (SS) hypertension and its associated kidney damage have been extensively studied, yet proper therapeutic strategies are lacking. The interest in altering the metabolome to affect renal and cardiovascular disease has been emerging. Here, we discuss the effect and potential mechanism behind the protective effect of lysine, an essential amino acid, on the progression of SS hypertension. RECENT FINDINGS: We have recently demonstrated that administering lysine in an SS rodent model can control the progression of hypertension. Both the animal and pilot human studies showed that lysine can efficiently inhibit tubular reabsorption of albumin and protect the kidneys from further damage. In addition, we conducted multilevel omics studies that showed increased lysine conjugation and excretion, leading to the depletion of harmful metabolites and an increase in useful ones. SUMMARY: Lysine's twofold action involves both mechanically flushing protein from proximal tubules to shield the kidneys and initiating metabolic adaptations in the kidneys. This results in a net positive impact on SS hypertension. While further research is necessary to apply the current findings in clinical settings, this study offers some evidence suggesting that lysine supplementation holds promise as a therapeutic approach for hypertensive kidney disease.


Assuntos
Hipertensão , Lisina , Cloreto de Sódio na Dieta , Lisina/metabolismo , Humanos , Animais , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Cloreto de Sódio na Dieta/efeitos adversos , Rim/metabolismo , Rim/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 325(2): F177-F187, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318990

RESUMO

High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.


Assuntos
Hipertensão , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Ratos , Ratos Endogâmicos Dahl , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Pressão Sanguínea/fisiologia , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Eletrólitos/metabolismo
3.
Physiol Rep ; 10(21): e15510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36353932

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.


Assuntos
Rim Policístico Autossômico Recessivo , Ratos , Animais , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Trifosfato de Adenosina
4.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232300

RESUMO

Kir5.1 is an inwardly rectifying potassium (Kir) channel subunit abundantly expressed in the kidney and brain. We previously established the physiologic consequences of a Kcnj16 (gene encoding Kir5.1) knockout in the Dahl salt-sensitive rat (SSKcnj16-/-), which caused electrolyte/pH dysregulation and high-salt diet-induced mortality. Since Kir channel gene mutations may alter neuronal excitability and are linked to human seizure disorders, we hypothesized that SSKcnj16-/- rats would exhibit neurological phenotypes, including increased susceptibility to seizures. SSKcnj16-/- rats exhibited increased light sensitivity (fMRI) and reproducible sound-induced tonic-clonic audiogenic seizures confirmed by electroencephalography. Repeated seizure induction altered behavior, exacerbated hypokalemia, and led to approximately 38% mortality in male SSKcnj16-/- rats. Dietary potassium supplementation did not prevent audiogenic seizures but mitigated hypokalemia and prevented mortality induced by repeated seizures. These results reveal a distinct, nonredundant role for Kir5.1 channels in the brain, introduce a rat model of audiogenic seizures, and suggest that yet-to-be identified mutations in Kcnj16 may cause or contribute to seizure disorders.


Assuntos
Epilepsia Reflexa/etiologia , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Convulsões/etiologia , Estimulação Acústica/efeitos adversos , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Reflexa/genética , Epilepsia Reflexa/fisiopatologia , Feminino , Técnicas de Inativação de Genes , Humanos , Hipopotassemia/etiologia , Hipopotassemia/genética , Masculino , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio na Dieta/administração & dosagem , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Convulsões/genética , Convulsões/fisiopatologia , Índice de Gravidade de Doença , Canal Kir5.1
5.
Clin Sci (Lond) ; 133(24): 2449-2461, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31799617

RESUMO

Kir5.1 (encoded by the Kcnj16 gene) is an inwardly rectifying K+ (Kir) channel highly expressed in the aldosterone-sensitive distal nephron of the kidney, where it forms a functional channel with Kir4.1. Kir4.1/Kir5.1 channels are responsible for setting the transepithelial voltage in the distal nephron and collecting ducts and are thereby major determinants of fluid and electrolyte distribution. These channels contribute to renal blood pressure control and have been implicated in salt-sensitive hypertension. However, mechanisms pertaining to the impact of K ir4.1/Kir5.1-mediated K+ transport on the renin-angiotensin-aldosterone system (RAAS) remain unclear. Herein, we utilized a knockout of Kcnj16 in the Dahl salt-sensitive rat (SSKcnj16-/-) to investigate the relationship between Kir5.1 and RAAS balance and function in the sensitivity of blood pressure to the dietary Na+/K+ ratio. The knockout of Kcnj16 caused substantial elevations in plasma RAAS hormones (aldosterone and angiotensin peptides) and altered the RAAS response to changing the dietary Na+/K+ ratio. Blocking aldosterone with spironolactone caused rapid mortality in SSKcnj16-/- rats. Supplementation of the diet with high K+ was protective against mortality resulting from aldosterone-mediated mechanisms. Captopril and losartan treatment had no effect on the survival of SSKcnj16-/- rats. However, neither of these drugs prevented mortality of SSKcnj16-/- rats when switched to high Na+ diet. These studies revealed that the knockout of Kcnj16 markedly altered RAAS regulation and function, suggesting Kir5.1 as a key regulator of the RAAS, particularly when exposed to changes in dietary sodium and potassium content.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Aldosterona/sangue , Angiotensinas/sangue , Animais , Pressão Sanguínea , Técnicas de Inativação de Genes , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Potássio na Dieta/administração & dosagem , Ratos Endogâmicos Dahl , Sódio na Dieta/administração & dosagem , Espironolactona/farmacologia , Canal Kir5.1
6.
Elife ; 72018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29336303

RESUMO

The first point of our body's contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Queratinócitos/fisiologia , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Tato , Animais , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética
7.
JCI Insight ; 2(18)2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28931751

RESUMO

Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Cloreto de Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Feminino , Furosemida/farmacologia , Hidroclorotiazida/farmacologia , Masculino , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/administração & dosagem , Canal Kir5.1
8.
PLoS One ; 11(3): e0151602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978657

RESUMO

Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.


Assuntos
Trifosfato de Adenosina/metabolismo , Queratinócitos/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Canais de Potencial de Receptor Transitório/deficiência , Vias Aferentes/fisiologia , Animais , Animais Congênicos , Artrite Experimental/fisiopatologia , Células Epidérmicas , Epiderme/metabolismo , Adjuvante de Freund/toxicidade , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Especificidade de Órgãos , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , RNA Mensageiro/biossíntese , Células Receptoras Sensoriais/fisiologia , Pele/citologia , Pele/embriologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA