Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 32(50): e2004290, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174265

RESUMO

There is an increasing interest to develop a next generation of touch pads that require stretchability and biocompatibility to allow their integration with a human body, and even to mimic the self-healing behavior with fast functionality recovery upon damage. However, most touch pads are developed based on stiff and brittle electrodes with the lack of the important nature of self-healing. Polyzwitterion-clay nanocomposite hydrogels as a soft, stretchable, and transparent ionic conductor with transmittance of 98.8% and fracture strain beyond 1500% are developed, which can be used as a self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on target substrates. A surface-capacitive touch system is adopted to sense a touched position. Finger positions are perceived during both point-by-point touch and continuous moving. Hydrogel touch pads are adhered to curved or flat insulators, with the high-resolution and self-healable input functions demonstrated by drawing, writing, and playing electronic games.


Assuntos
Biomimética/instrumentação , Pressão , Tato , Adesividade , Capacitância Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA