Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1265971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877087

RESUMO

Gynostemma pentaphyllum an important medicinal herb, can absorb high amounts of cadmium (Cd) which can lead to excessive Cd contamination during the production of medicines and tea. Hence, it is crucial to investigate the response mechanism of G. pentaphyllum under Cd stress to develop varieties with low Cd accumulation and high tolerance. Physiological response analysis, transcriptomics and metabolomics were performed on G. pentaphyllum seedlings exposed to Cd stress. Herein, G. pentaphyllum seedlings could significantly enhance antioxidant enzyme activities (POD, CAT and APX), proline and polysaccharide content subject to Cd stress. Transcriptomics analysis identified the secondary metabolites, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways associated with Cd stress, which mainly involved the XTH, EXP and GST genes. Metabolomics analysis identified 126 differentially expressed metabolites, including citric acid, flavonoid and amino acids metabolites, which were accumulated under Cd stress. Multi-omics integrative analysis unraveled that the phenylpropanoid biosynthesis, starch, and sucrose metabolism, alpha-linolenic acid metabolism, and ABC transporter were significantly enriched at the gene and metabolic levels in response to Cd stress in G. pentaphyllum. In conclusion, the genetic regulatory network sheds light on Cd response mechanisms in G. pentaphyllum.

2.
J Plant Physiol ; 286: 154007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209458

RESUMO

Seed dormancy and germination are critical to medicinal plant reproduction. Dormancy-associated gene (DRM1) has been involved in the regulation of dormancy in Arabidopsis meristematic tissues or organs. However, research on molecular functions and regulations of DRM1 in Amomum tsaoko, an important medicinal plant, is rare. In this study, the DRM1 was isolated from embryos of A. tsaoko, and the results of protein subcellular localization in Arabidopsis protoplast indicated that DRM1 was mainly nucleus and cytoplasm. Expression analysis showed that DRM1 especially exhibited the highest transcript level in dormant seed and short-time stratification while displaying a high response of hormone and abiotic stress. Further investigation showed that ectopic expression of DRM1 in Arabidopsis exhibited delayed seed germination and germination capability to high temperatures. Additionally, DRM1 transgenic Arabidopsis exhibited increased tolerance to heat stress by enhancing antioxidative capacities and regulating stress-associated genes (AtHsp25.3-P, AtHsp18.2-CI, AtHsp70B, AtHsp101, AtGolS1, AtMBF1c, AtHsfA2, AtHsfB1 and AtHsfB2). Overall, our results reveal the role of DRM1 in seed germination and abiotic stress response.


Assuntos
Amomum , Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Germinação/genética , Proteínas de Arabidopsis/metabolismo , Amomum/metabolismo , Termotolerância/genética , Sementes/genética , Sementes/metabolismo , Dormência de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3832-3837, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472256

RESUMO

Freshly collected seeds of Amomum tsaoko demonstrate obvious dormancy. Therefore, the selection of stable reference genes during seed dormancy release is very important for the subsequent functional research of related genes. In this study, ten commonly used reference genes(GAPDH, 40S, actin, tubulin, EIF4A-9, EIF2α, UBC, UBCE2, 60S, and UBQ) were selected as candidates for quantitative Real-time polymerase chain reaction(qRT-PCR) of the embryo samples of A. tsaoko at different dormancy release stages. Three kinds of software(BestKeeper, geNorm, and Normfinder) and the Delta CT method were used to evaluate the expression stability of the candidate reference genes, and the RefFinder online tool was employed to integrate the results and generate a comprehensive ranking. The results showed that the expression levels of the ten candidate reference genes differed greatly in different embryo samples. GAPDH and UBC had high expression levels, as manifested by the small Ct values. GeNorm identified 40S and UBCE2 as the most stable genes. NormFinder ranked EIF2α as the most stable gene and UBC as the least stable gene. UBCE2 was found to be the most stable gene and actin the least stable one by BestKeeper. Delta CT analysis suggested that the expression of 40S was most stable. UBCE2 was recommended as the most stably expressed gene by RefFinder. Thus, UBCE2 is the ideal reference gene for qRT-PCR analysis of A. tsaoko seeds at different dormancy release stages. The results may lay a foundation for analyzing the expression of related genes during seed dormancy release of A. tsaoko.


Assuntos
Amomum , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética
4.
Sci Rep ; 11(1): 9, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420059

RESUMO

Callerya speciosa (Champ. ex Benth.) Schot is a traditional Chinese medicine characterized by tuberous roots as the main organ of isoflavonoid accumulation. Root thickening and isoflavonoid accumulation are two major factors for yield and quality of C. speciosa. However, the underlying mechanisms of root thickening and isoflavonoid biosynthesis have not yet been elucidated. Here, integrated morphological, hormonal and transcriptomic analyses of C. speciosa tuberous roots at four different ages (6, 12, 18, 30 months after germination) were performed. The growth cycle of C. speciosa could be divided into three stages: initiation, rapid-thickening and stable-thickening stage, which cued by the activity of vascular cambia. Endogenous changes in phytohormones were associated with developmental changes during root thickening. Jasmonic acid might be linked to the initial development of tuberous roots. Abscisic acid seemed to be essential for tuber maturation, whereas IAA, cis-zeatin and gibberellin 3 were considered essential for rapid thickening of tuberous roots. A total of 4337 differentially expressed genes (DEGs) were identified during root thickening, including 15 DEGs participated in isoflavonoid biosynthesis, and 153 DEGs involved in starch/sucrose metabolism, hormonal signaling, transcriptional regulation and cell wall metabolism. A hypothetical model of genetic regulation associated with root thickening and isoflavonoid biosynthesis in C. speciosa is proposed, which will help in understanding the underlying mechanisms of tuberous root formation and isoflavonoid biosynthesis.


Assuntos
Fabaceae/genética , Fabaceae/metabolismo , Isoflavonas/biossíntese , Sinalização do Cálcio , Fabaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sistema de Sinalização das MAP Quinases , Medicina Tradicional Chinesa , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA