Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1263962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155957

RESUMO

Introduction: Qi-Xian Decoction (QXD), a traditional Chinese medicine (TCM) formula consisting of eight herbs, has been clinically used to treat asthma. However, the underlying mechanisms have not been completely elucidated. This study aimed to combine metabolomics and network pharmacology to reveal the mechanism of action of QXD in asthma treatment. Methods: An ovalbumin (OVA)-induced asthma mouse model was constructed to evaluate the therapeutic effects of QXD. Serum metabolomics and network pharmacology were combined to study the mechanism of anti-asthma action as well as the potential target, and related biological functions were validated. Results: The QXD treatment has demonstrated significant protective effects in OVA-induced asthmatic mice, as evidenced by its ability to inhibit inflammation, IgE, mucus overproduction, and airway hyperreactivity (AHR). Metabolomic analysis has revealed a total of 140 differential metabolites associated with QXD treatment. In addition, network pharmacology has identified 126 genes that are linked to the effects of QXD, including TNF, IL-6, IL1ß, STAT3, MMP9, EGFR, JUN, CCL2, TLR4, MAPK3 and MAPK8. Through comprehensive gene-metabolite interaction network analysis, seven key metabolites have been identified and associated with the potential anti-asthmatic effect of QXD, with palmitic acid (PA) being the most notable among them. In vitro validation studies have confirmed the gene-metabolite interaction involving PA, IL-6, and MAPK8. Furthermore, our research has demonstrated that QXD treatment can effectively inhibit PA-promoted IL-6 expression in MH-S cells and reduce PA concentration in OVA-induced asthmatic mice. Conclusion: The regulation of metabolic pathways by QXD was found to be associated with its anti-asthmatic action, which provides insight into the mechanism of QXD in treating asthma.

2.
Mol Carcinog ; 59(6): 575-589, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32187756

RESUMO

Dihydromethysticin (DHM), a natural compound derived from Kava, has been reported to be effective against mental disorders and some malignant tumors. However, little is known about the inhibitory effect of DHM on colorectal cancer (CRC). First, we examined the impact of DHM on human colon cancer cell lines, which demonstrated that DHM inhibits proliferation, migration, and invasion and promotes apoptosis and cell cycle arrest in colon cancer cells in vitro. Using small hairpin RNA, we inhibited nucleotide-oligomerization domain-like receptor subfamily C3 (NLRC3)/phosphoinositide 3-kinase (PI3K) pathway to elucidate the partial signaling of DHM-mediated tumor suppression. Additionally, using an ectopic human CRC model, we verified whether DHM inhibits tumor growth and angiogenesis via the NLRC3/PI3K pathway in vivo. Overall, DHM showed an inhibitory effect on CRC by altering cell proliferation, migration, invasion, apoptosis, cell cycle, and angiogenesis, possibly via the NLRC3/PI3K pathway. Thus, DHM may be a promising candidate for CRC therapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Kava/química , Fosfatidilinositol 3-Quinases/metabolismo , Pironas/farmacologia , Animais , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Lett ; 347(1): 79-87, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24486741

RESUMO

The present study aimed to investigate the anti-cancer effects of hydroxytyrosol (HT) in human hepatocellular carcinoma (HCC) cells. Our results show that HT could inhibit proliferation, induce G2/M cell cycle arrest and apoptosis in human HCC cells. Mechanically, we found that HT could suppress the activation of AKT and nuclear factor-kappa B (NF-κB) pathways. HT also significantly inhibited the tumor growth, angiogenesis and the activation of AKT and NF-κB pathways in an orthotopic model of human HCC in vivo. These data suggest that HT may be a promising candidate agent for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Divisão Celular/efeitos dos fármacos , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Álcool Feniletílico/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/efeitos dos fármacos , Ativação Enzimática , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Azeite de Oliva , Álcool Feniletílico/isolamento & purificação , Álcool Feniletílico/farmacologia , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA