Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 417: 135786, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921365

RESUMO

This study aimed to systematically investigate the changes in peel color, physicochemical characteristics, textural properties, and peel ultrastructure between CaCl2-treated and water-soaked passion fruit under short-term storage at room temperature (20 °C) for eight days. The fruit peel was further analyzed and compared for the differences in calmodulin (CaM) gene expression between the two groups. The data were analyzed using principal component analysis. The results confirmed that CaCl2 treatment effectively maintained the appearance and color of passion fruit, inhibited peel browning, and improved fruit quality. The treatment had an effect on maintaining the physiological properties of passion fruit parenchyma, effectively delayed the passion fruit senescence, and kept the structural integrity of the fruit peel. The relative expression of PeCaM gene in the CaCl2-treated fruit peels was higher than that of the control peels. The Ca2+ stimulated the relative expression of the PeCaM gene, which delayed the senescence of passion fruit.


Assuntos
Frutas , Passiflora , Frutas/química , Cloreto de Cálcio , Passiflora/química
2.
Front Med (Lausanne) ; 9: 842098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814776

RESUMO

Background: Polyene phosphatidylcholine (PPC) has been widely used to treat liver diseases in China. However, there is a lack of post-marketing evidence demonstrating its liver-protective efficiency among patients infected with hepatitis B virus (HBV). This study analyzed the multicenter real-world data to compare the effectiveness of PPC with those of magnesium isoglycyrrhizinate (IsoMag) and glutathione (GSH) in patients with liver injury. Methods: This study comprised the real-world data analysis of a multicenter, retrospective observational cohort. The data were retrieved from the Cooperative Registry of the Hospital Prescription in China between 1 October 2018, and 30 September 2019. A growth curve analysis was performed to compare the effects of different treatments on liver function longitudinally for up to 30 days after treatment commencement. In addition, the dose effect of the PPC treatment was investigated. Results: The final cohort included 6,052 patients with approximately 8% infected with HBV (N = 471). There were 1,649, 1,750, and 2,653 patients in the PPC, GSH, and IsoMag groups, respectively, with an average age of 53.9 years. In patients with HBV infection, the PPC treatment was associated with a significant decline in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (slopes: -3.7, 95% CI, -6.0 to -1.5 U/L/day; -2.4, 95% CI, -4.5 to -0.3 U/L/day, respectively). However, there were no significant differences in the effects among the three groups. In patients without HBV infection, the PPC treatment decreased ALT, AST, γ-glutamyl transferase (GGT), and albumin levels (-5.2, 95% CI, -5.8 to -4.5 U/L/day; -3.5, 95% CI, -4.2 to -2.7 U/L/day; -4.9, 95% CI, -6.2 to -3.7 U/L/day, -0.07, 95% CI, -0.09 to -0.04 g/L/day, respectively) and showed a stronger effect on lowering ALT levels than GSH (-2.6, 95% CI, -3.3 to -1.8 U/L/day, p < 0.05), as well as a stronger effect on lowering GGT levels than IsoMag (-1.4, 95% CI, -2.4 to -0.4 U/L/day, p < 0.05). PPC had no impact on prothrombin activity levels in patients with or without HBV infection. High-dose PPC exhibited a stronger effect on lowering ALT and AST levels than low-dose PPC. Conclusion: This was the first real-world multicenter study to demonstrate that PPC efficiently lowers ALT and AST levels in patients with liver diseases regardless of the status of HBV infection. PPC treatment showed a comparable or better effect compared with GSH and IsoMag treatments. High-dose PPC resulted in a stronger effect than low-dose PPC.

3.
Biomater Sci ; 6(2): 372-387, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29334095

RESUMO

Recently, two dimensional transition metal dichalcogenides (TMDCs) being used as nanomedicine have aroused great interest because of their unique photothermal properties. A simple liquid-phase method was used to prepare gadolinium (Gd3+)-doped molybdenum selenide (MoSe2) nanosheets, and then using poly(ethylene glycol) (PEG) modification on the surface, MoSe2(Gd3+)-PEG nanosheets were obtained which had high stability in physiological solutions and showed no obvious toxicity in vivo. It revealed that Gd3+ used as a paramagnetic material for MoSe2(Gd3+)-PEG provided a strong contrast effect in magnetic resonance imaging, furthermore, the MoSe2 showed strong absorption in the near infrared region, and therefore, MoSe2(Gd3+)-PEG could be used as contrast agent for photoacoustic imaging (PAI). In in vitro experiments, it was found that MoSe2(Gd3+)-PEG could effectively increase the temperature to help kill cancer cells under laser irradiation. In vivo experiments showed that there was an enhanced permeation and retention effect in the tumor after intravenous injection measured using magnetic resonance/photoacoustic (MR/PA) bimodal imaging. After photothermal therapy, a significant suppression effect was achieved for tumors in mice by injection of these nanosheets with laser irradiation. This work emphasized that the simple doped TMDC nanomaterials when combined with treatment and imaging functions achieve a cancer therapy, which will provide a good opportunity for future diagnosis and treatment of cancer.


Assuntos
Cádmio/química , Molibdênio/química , Imagem Multimodal/métodos , Nanopartículas/química , Neoplasias Experimentais/diagnóstico por imagem , Fotoquimioterapia/métodos , Selênio/química , Animais , Meios de Contraste/química , Células Hep G2 , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/uso terapêutico , Neoplasias Experimentais/terapia , Técnicas Fotoacústicas/métodos , Polietilenoglicóis/química
4.
Acta Biomater ; 54: 294-306, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267598

RESUMO

To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. STATEMENT OF SIGNIFICANCE: To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Selênio/farmacologia , Animais , Antibióticos Antineoplásicos/química , Doxorrubicina/agonistas , Doxorrubicina/química , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Porosidade , Selênio/agonistas , Selênio/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA