Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 188, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071507

RESUMO

BACKGROUND: Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown. RESULTS: Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication. CONCLUSIONS: This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.


Assuntos
Alho , Alho/genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830208

RESUMO

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.


Assuntos
Compostos Alílicos/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/microbiologia , Dissulfetos/farmacologia , Fungicidas Industriais/farmacologia , Alho/química , Peronospora/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Transcriptoma/efeitos dos fármacos
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502163

RESUMO

Garlic (Allium sativum L.) is an important vegetable and is cultivated and consumed worldwide for its economic and medicinal values. Garlic cloves, the major reproductive and edible organs, are derived from the axillary meristems. KNOTTED-like homeobox (KNOX) proteins, such as SHOOT MERISTEM-LESS (STM), play important roles in axillary meristem formation and development. However, the KNOX proteins in garlic are still poorly known. Here, 10 AsKNOX genes, scattered on 5 of the 8 chromosomes, were genome-wide identified and characterized based on the newly released garlic genome. The typical conserved domains of KNOX proteins were owned by all these 10 AsKNOX homologs, which were divided into two Classes (Class I and Class II) based on the phylogenetic analysis. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 10 AsKNOX proteins. Cis-element prediction, tissue expression analysis, and expression profilings in responding to exogenous GA3 and 6-BA showed the potential involvement of AsKNOX genes in the gibberellin and cytokinin signaling pathways. Overall, the results of this work provided a better understanding of AsKNOX genes in garlic and laid an important foundation for their further functional studies.


Assuntos
Citocininas/farmacologia , Alho/genética , Giberelinas/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Alho/efeitos dos fármacos , Alho/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais
4.
Mol Plant ; 13(9): 1328-1339, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730994

RESUMO

Garlic, an economically important vegetable, spice, and medicinal crop, produces highly enlarged bulbs and unique organosulfur compounds. Here, we report a chromosome-level genome assembly for garlic, with a total size of approximately 16.24 Gb, as well as the annotation of 57 561 predicted protein-coding genes, making garlic the first Allium species with a sequenced genome. Analysis of this garlic genome assembly reveals a recent burst of transposable elements, explaining the substantial expansion of the garlic genome. We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans, and provided new insights into the biosynthesis of these two compounds. Furthermore, a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs. The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.


Assuntos
Dissulfetos/metabolismo , Alho/genética , Genoma de Planta/genética , Ácidos Sulfínicos/metabolismo , Elementos de DNA Transponíveis/genética , Alho/metabolismo , Transcriptoma/genética
5.
Chem Asian J ; 11(9): 1357-60, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27101381

RESUMO

An unsymmetrically protonated PN(3) -pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved.


Assuntos
Formiatos/química , Hidrogênio/química , Nitrogênio/química , Compostos Organometálicos/química , Fósforo/química , Rutênio/química , Ligantes , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA