Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 136: 111073, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877368

RESUMO

Terminalia bellirica (TB) has been used in traditional Indian medical system, Ayurveda. However, the mechanism underlying the efficacy of the TB extract against oral squamous cell carcinoma (OSCC) is yet to be explored. The present study established a connecting link between the TB extract induced apoptosis and autophagy in relation to reactive oxygen species (ROS). Our study revealed, that gallic acid in the TB extract possess a strong free radical scavenging capacity contributing towards the selective anti-proliferative activity. Furthermore, TB extract markedly enhanced the accumulation of ROS that facilitated mitochondrial apoptosis through DNA damage, indicating ROS as the vital component in regulation of apoptosis. This effect was effectively reversed by the use of a ROS scavenger, N-acetyl cysteine (NAC). Moreover, it was observed to induce autophagy; however, it attenuated the autophagosome-lysosome fusion in Cal33 cells without altering the lysosomal activity. Pharmacological inhibitors of autophagy, namely, 3-methyladenine and chloroquine, were demonstarated to regulate the stage-specific progression of autophagy post treatment with the TB extract, favouring subsequent activation of apoptosis. These findings revealed, presence of gallic acid in TB extract below NOAEL value causes oxidative upset in oral cancer cells and promote programmed cell death which has a potential therapeutic value against oral squamous cell carcinoma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Bucais/fisiopatologia , Extratos Vegetais/farmacologia , Terminalia/química , Antineoplásicos Alquilantes/análise , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Extratos Vegetais/análise , Espécies Reativas de Oxigênio/metabolismo
2.
Phytomedicine ; 55: 179-190, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668428

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT), a key step in oral cancer progression, is associated with invasion, metastasis, and therapy resistance, thus targeting the EMT represents a critical therapeutic strategy for the treatment of oral cancer metastasis. Our previous study showed that Abrus agglutinin (AGG), a plant lectin, induces both intrinsic and extrinsic apoptosis to activate the tumor inhibitory mechanism. OBJECTIVE: This study aimed to investigate the role of AGG in modulating invasiveness and stemness through EMT inhibition for the development of antineoplastic agents against oral cancer. METHODS: The EMT- and stemness-related proteins were studied in oral cancer cells using Western blot analysis and fluorescence microscopy. The potential mechanisms of Snail downregulation through p73 activation in FaDu cells were evaluated using Western blot analysis, immunoprecipitation, confocal microscopy, and molecular docking analysis. Immunohistochemical staining of the tumor samples of AGG-treated FaDu-xenografted nude mice was performed. RESULTS: At the molecular level, AGG-induced p73 suppressed Snail expression, leading to EMT inhibition in FaDu cells. Notably, AGG promoted the translocation of Snail from the nucleus to the cytoplasm in FaDu cells and triggered its degradation through ubiquitination. In this setting, AGG inhibited the interaction between Snail and p73 in FaDu cells, resulting in p73 activation and EMT inhibition. Moreover, in epidermal growth factor (EGF)-stimulated FaDu cells, AGG abolished the upregulation of extracellular signal-regulated kinase (ERK)1/2 that plays a pivotal role in the upregulation of Snail to regulate the EMT phenotypes. In immunohistochemistry analysis, FaDu xenografts from AGG-treated mice showed decreased expression of Snail, SOX2, and vimentin and increased expression of p73 and E-cadherin compared with the control group, confirming EMT inhibition as part of its anticancer efficacy against oral cancer. CONCLUSION: In summary, AGG stimulates p73 in restricting EGF-induced EMT, invasiveness, and stemness by inhibiting the ERK/Snail pathway to facilitate the development of alternative therapeutics for oral cancer.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Lectinas de Plantas/farmacologia , Fatores de Transcrição da Família Snail/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Lectinas de Plantas/química , Fatores de Transcrição da Família Snail/química , Fatores de Transcrição da Família Snail/genética , Proteína Tumoral p73/química , Proteína Tumoral p73/genética , Ubiquitinação , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Free Radic Biol Med ; 112: 452-463, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843778

RESUMO

Mitophagy, a special type of autophagy, plays an important role in the mitochondria quality control and cellular homeostasis. In this study, we examined the molecular mechanism of mitophagy induction with benzo[a]pyrene (B[a]P), a ubiquitous polycyclic aromatic hydrocarbon, which acts as a prosurvival response against apoptotic cell death. Our study showed that B[a]P displayed higher cytotoxicity in autophagy-deficient HaCaT cells as compared to control. Further, we showed that B[a]P triggered the Beclin-1-dependent autophagy through the mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. Moreover, our study indicated that the B[a]P-induced autophagy was initiated through the activation of cytochrome P450 1B1 (CYP1B1) and the aryl hydrocarbon receptor (AhR) in HaCaT cells. Intriguingly, the B[a]P-induced Beclin-1-mediated mitophagy was suppressed in CYP1B1 and AhR knockdown HaCaT cells, indicating a crucial role of B[a]P activation in the mitophagy induction to regulate cell death. B[a]P was shown to increase the mitochondrial dysfunction and decrease the mitochondrial membrane potential, resulting in depletion of ATP level along with the inhibition of the oxygen consumption rate in HaCaT cells. Importantly, the supplementation of methyl pyruvate compensated for the B[a]P-induced drop in the ATP level and mitigated the reactive oxygen species burden and autophagy. Mechanistically, B[a]P inhibited the manganese superoxide dismutase (MnSOD) activity and we found that the activated mitochondrial CYP1B1 interacted with MnSOD, inflicting mitophagy to protect from B[a]P-induced apoptosis. In summary, our study reveals mitophagy induction as a cellular protection mechanism against B[a]P-triggered toxicity and carcinogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Linhagem Celular Transformada , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia/genética , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Toxicol Mech Methods ; 27(1): 1-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27919191

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Fitoterapia/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Carcinogênese , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/biossíntese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Preparações de Plantas/uso terapêutico , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Phytother Res ; 30(11): 1794-1801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27432245

RESUMO

Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bacopa/química , Benzo(a)pireno/química , Extratos Vegetais/química , Humanos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio
6.
Acta Pharmacol Sin ; 35(6): 814-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793310

RESUMO

AIM: Abrus agglutinin (AGG) from the seeds of Indian medicinal plant Abrus precatorius belongs to the class II ribosome inactivating protein family. In this study we investigated the anticancer effects of AGG against human hepatocellular carcinoma in vitro and in vivo. METHODS: Cell proliferation, DNA fragmentation, Annexin V binding, immunocytofluorescence, Western blotting, caspase activity assays and luciferase assays were performed to evaluate AGG in human liver cancer cells HepG2. Immunohistochemical staining and TUNEL expression were studied in tumor samples of HepG2-xenografted nude mice. RESULTS: AGG induced apoptosis in HepG2 cells in a dose- and time-dependent manner. AGG-treated HepG2 cells demonstrated an increase in caspase 3/7, 8 and 9 activities and a sharp decrease in the Bcl-2/Bax ratio, indicating activation of a caspase cascade. Co-treatment of HepG2 cells with AGG and a caspase inhibitor or treatment of AGG in Bax knockout HepG2 cells decreased the caspase 3/7 activity in comparison to HepG2 cells exposed only to AGG. Moreover, AGG decreased the expression of Hsp90 and suppressed Akt phosphorylation and NF-κB expression in HepG2 cells. Finally, AGG treatment significantly reduced tumor growth in nude mice bearing HepG2 xenografts, increased TUNEL expression and decreased CD-31 and Ki-67 expression compared to levels observed in the untreated control mice bearing HepG2 cells. CONCLUSION: AGG inhibits the growth and progression of HepG2 cells by inducing caspase-mediated cell death. The agglutinin could be an alternative natural remedy for the treatment of human hepatocellular carcinomas.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Abrus/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA