RESUMO
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Assuntos
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Antioxidantes , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Anti-Inflamatórios/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Ácido UrsólicoRESUMO
Curcumin (CUR) has received great attention over the past two decades due to its anticancer, anti-inflammatory, and antioxidant properties. Similarly, Dichloroacetate (DCA), an pyruvate dehydrogenase kinase 1 (PKD1) inhibitor, has gained huge attention as a potential anticancer drug. However, the clinical utility of these two agents is very limited because of the poor bioavailability and unsolicited side effects, respectively. We have synthesized fusion conjugates of CUR and DCA with an amino acids linker to overcome these limitations by utilizing the molecular hybridization approach. The molecular docking studies showed the potential targets of Curcumin-Modified Conjugates (CMCs) in breast cancer cells. We synthesized six hybrid conjugates named CMC1-6. These six CMC conjugates do not show any significant toxicity in a human normal immortalized mammary epithelial cell line (MCF10A) in vitro and C57BL/6 mice in vivo. However, treatment with CMC1 and CMC2 significantly reduced the growth and clonogenic survival by colony-formation assays in several human breast cancer cells (BC). Treatment by oral gavage of a transgenic mouse BC and metastatic BC tumor-bearing mice with CMC2 significantly reduced tumor growth and metastasis. Overall, our study provides strong evidence that CUR and DCA conjugates have a significant anticancer properties at a sub-micromolar concentration and overcome the clinical limitation of using CUR and DCA as potential anticancer drugs.
RESUMO
Viral infections are among the most complex medical problems and have been a major threat to the economy and global health. Several epidemics and pandemics have occurred due to viruses, which has led to a significant increase in mortality and morbidity rates. Natural products have always been an inspiration and source for new drug development because of their various uses. Among all-natural sources, plant sources are the most dominant for the discovery of new therapeutic agents due to their chemical and structural diversity. Despite the traditional use and potential source for drug development, natural products have gained little attention from large pharmaceutical industries. Several plant extracts and isolated compounds have been extensively studied and explored for antiviral properties against different strains of viruses. In this review, we have compiled antiviral plant extracts and natural products isolated from plants reported since 2015.
Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Desenvolvimento de Medicamentos , Extratos Vegetais/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Antivirais/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas , Flavivirus/efeitos dos fármacos , Vírus de Hepatite/efeitos dos fármacos , Humanos , Estrutura Molecular , Orthomyxoviridae/efeitos dos fármacos , Extratos Vegetais/química , Simplexvirus/efeitos dos fármacosRESUMO
Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer's disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting ß-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.
Assuntos
Doença de Alzheimer , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Plantas MedicinaisRESUMO
A set of diphenyl ether derivatives bearing different heterocycles were synthesized from 4-phenoxybenzohydrazide 1 in good yield. Synthesized compounds were screened against a broad panel of viruses in different cell cultures and some of the synthesized compounds showed promising antiviral properties.