Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Healthc Mater ; 12(29): e2301584, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660278

RESUMO

The serious threat that cancer poses to human health highlights the significance of early detection and effective treatment. The integration of fluorescence diagnosis and photothermal therapy in NIR-II has gained attention due to its high sensitivity, fast response, and noninvasiveness. Fluorescence, produced by the radiative relaxation process of electrons in a molecule, and photothermal, generated by the nonradiative relaxation process of electrons in a molecule, are competing photophysical processes. Hence, it is a challenge for the molecule to balance between the properties of fluorescence and photothermal. In this study, a NIR-II hemicyanine with TICT character is designed to obtain molecules with both better fluorescence and photothermal properties, utilizing positively charged pyridine salt and triphenylamine as electron acceptor and donor, respectively, and oxole as the conjugated π-bridge. HCY-995, one of the synthesized compounds, has a quantum yield of 0.09%, photothermal conversion efficiency of 54.90%, and a significant Stoke shift of 232 nm, which makes it appropriate for the integration of photothermal therapy and high-resolution imaging. This study provides new insights into the development of NIR-II molecules with fluorescent and photothermal integrated properties.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Carbocianinas , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Óptica , Fototerapia
2.
Angew Chem Int Ed Engl ; 62(38): e202309768, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559354

RESUMO

Conventional cyanine dyes with a symmetric structure are "always-on", which can easily accumulate in the liver and display high liver background fluorescence, inevitably interfering the accurate diagnosis and therapy in extrahepatic diseases. We herein report a platform of NIR-II non-symmetric cyanine (NSCyanine) dyes by harnessing a non-symmetric strategy, which are extremely sensitive to pH/viscosity and can be activated via a "dual-key-and-lock" strategy. These NSCyanine dyes with a low pKa (<4.0) only show weak fluorescence at lysosome pH (key1), however, the fluorescence can be completely switched on and significantly enhanced by intracellular viscosity (key2) in disease tissues, exhibiting high target-to-liver ratios up to 19.5/1. Notably, high-contrast phototheranostics in extrahepatic diseases are achieved, including intestinal metastasis-imaging, acute gastritis-imaging, bacteria infected wound healing, and tumor ablation via targeted combined photothermal therapy and chemotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Diagnóstico por Imagem , Corantes , Fluorescência , Fototerapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
3.
Chem Sci ; 12(29): 10097-10105, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34349972

RESUMO

Phototherapy holds great promise for disease treatment; however, traditional "always-on" photoagents have been restricted to clinical translation due to their nonspecific response and side effects on normal tissues. Here, we show a tumor microenvironment activated photothermal and photoacoustic agent as an activatable prodrug and probe that allows precise cancer diagnosis and treatment. Such an in situ revitalized therapeutic and contrast agent is achieved via controllable plasmonic heating for thermoplasmonic activation. This enables monitoring of signal molecule dynamics, real-time photothermal and photoacoustic imaging of tumors and lymph node metastasis, and targeted photothermal therapy without unwanted phototoxicity to normal tissues. Our study provides a practical solution to the non-specificity problem in phototherapy and offers precision cancer therapeutic and theranostic strategies. This work may advance the development of ultrasensitive disease diagnosis and precision medicine.

4.
Anal Chem ; 92(1): 1292-1300, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31855416

RESUMO

We demonstrate an effective approach to realize active and real-time temperature monitoring around the gold nanobipyramids (AuNBPs)-labeled cancer cell under 808 nm laser irradiation by combining optical tweezers and temperature-sensitive upconversion microparticles (UCMPs). On the one hand, the aptamer-modified AuNBPs that absorb laser at 808 nm not only act as an excellent photothermal reagent but also accurately and specifically bind the target cancer cells. On the other hand, the single optically trapped NaYF4:Yb3+, Er3+ UCMPs with a 980 nm laser exhibit temperature-dependent luminescence properties, where the intensity ratio of emission 525 and 547 nm varies with the ambient temperature. Therefore, real-time temperature variation monitoring is performed by 3D manipulation of the trapped single UCMP to control its distance from the AuNBPs-labeled cancer cell while being photothermally killed. The results show distance-related thermal propagation because the temperature increase reaches as high as 10 °C at a distance of 5 µm from the cell, whereas the temperature difference drops rapidly to 5 °C when this distance increases to 15 µm. This approach shows that the photothermal conversion from AuNBPs is sufficient to kill the cancer cells, and the temperature increase can be controlled within the micrometer level at a certain period of time. Overall, we present a micrometer-size thermometer platform and provide an innovative strategy to measure temperature at the micrometer level during photothermal killing of cancer cells.


Assuntos
Luminescência , Nanopartículas/química , Pinças Ópticas , Compostos Organoáuricos/química , Fototerapia , Temperatura , Células A549 , Células Cultivadas , Érbio/química , Células HEK293 , Calefação , Humanos , Lasers , Imagem Óptica , Compostos Organoáuricos/síntese química , Fatores de Tempo , Itérbio/química , Ítrio/química
5.
Anal Chem ; 91(3): 2086-2092, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592404

RESUMO

Immunoassay is commonly used for the detection of disease biomarkers, but advanced instruments and professional operating are often needed with current techniques. The facile readout strategy for immunoassay is mainly limited to the gold nanoparticles-based colorimetric detection. Here, we show that photothermal nanoparticles can be applied for biosensing and immunoassay with temperature as readout. We develop a plasmonic and photothermal immunoassay that allows straightforward readout by color and temperature based on crystal growth, without advanced equipment. It is demonstrated that alkaline phosphatase-triggered silver deposition on the surface of gold nanostars causes a large blue shift in the localized surface plasmon resonance of the nanosensor, accompanied by photothermal conversion efficiency changes. This approach also allows dual-readout of immunoassays with high sensitivity and great accuracy for the detection of prostate-specific antigen in complex samples. Our strategy provides a promising way for point-of-care testing and may broaden the applicability of programmable nanomaterials for diagnostics.


Assuntos
Fosfatase Alcalina/química , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Ouro/química , Nanopartículas Metálicas/química , Fosfatase Alcalina/metabolismo , Cristalização , Estrutura Molecular , Fototerapia , Testes Imediatos , Antígeno Prostático Específico/análise
6.
Small ; 13(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28084692

RESUMO

Theranostic nanoprobes integrated with diagnostic imaging and therapy capabilities have shown great potential for highly effective tumor therapy by realizing imaging-guided drug delivery and tumor treatment. Developing novel high-performance nanoprobes is an important basis for tumor theranostic application. Here, near-infrared (NIR) fluorescent and low-biotoxicity Ag2 Se quantum dots (QDs) have been coupled with cetuximab, a clinical antiepidermal growth factor receptor antibody drug for tumor therapy, via a facile bioconjugation strategy to prepare multifunctional Ag2 Se-cetuximab nanoprobes. Compared with the Ag2 Se QDs alone, the Ag2 Se-cetuximab nanoprobes display faster and more enrichment at the site of orthotopic tongue cancer, and thus present better NIR fluorescence contrast between the tumor and the surrounding regions. At 24 h postinjection, the NIR fluorescence of Ag2 Se-cetuximab nanoprobes at the tumor site is still easily detectable, whereas no fluorescence is observed for the Ag2 Se QDs. Moreover, the Ag2 Se-cetuximab nanoprobes have also significantly inhibited the tumor growth and improved the survival rate of orthotopic tongue cancer-bearing nude mice from 0% to 57.1%. Taken together, the constructed multifunctional Ag2 Se-cetuximab nanoprobes have achieved combined targeted imaging and therapy of orthotopic tongue cancer, which may greatly contribute to the development of nanotheranostics.


Assuntos
Cetuximab/uso terapêutico , Diagnóstico por Imagem , Raios Infravermelhos , Nanopartículas/química , Compostos de Selênio/química , Prata/química , Neoplasias da Língua/diagnóstico , Neoplasias da Língua/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Pontos Quânticos/ultraestrutura , Compostos de Selênio/toxicidade , Prata/toxicidade , Solubilidade , Propriedades de Superfície , Análise de Sobrevida , Nanomedicina Teranóstica , Fatores de Tempo , Neoplasias da Língua/patologia , Resultado do Tratamento , Água/química
7.
Sci Rep ; 5: 11937, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149707

RESUMO

Recently, single cell cloning techniques have been gradually developed benefited from their important roles in monoclonal antibody screening, tumor heterogeneity research fields, etc. In this study, we developed a high throughput device containing 1400 lateral chambers to efficiently isolate single cells and carry out long-term single cell clonal cultivation as well as tumor heterogeneity studies. Most of the isolated single cells could proliferate normally nearly as long as three weeks and hundreds of clones could be formed once with one device, which made it possible to study tumor heterogeneity at single cell level. The device was further used to examine tumor heterogeneity such as morphology, growth rate, anti-cancer drug tolerance as well as adenosine triphosphate-binding cassette (ABC) transporter ABCG2 protein expression level. Except for the single cell isolation and tumor heterogeneity studies, the device is expected to be used as an excellent platform for drug screening, tumor biomarker discovering and tumor metastasis assay.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Análise em Microsséries/métodos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Separação Celular , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Indometacina/toxicidade , Análise em Microsséries/instrumentação , Microscopia de Fluorescência
8.
ACS Nano ; 8(5): 5116-24, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24779675

RESUMO

Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.


Assuntos
Técnicas Biossensoriais , Nanotecnologia/métodos , Pontos Quânticos , Selênio/química , Linhagem Celular Tumoral , Desenho de Equipamento , Corantes Fluorescentes/química , Humanos , Fragmentos Fc das Imunoglobulinas/química , Separação Imunomagnética , Vírus da Influenza A Subtipo H9N2 , Ligantes , Limite de Detecção , Teste de Materiais , Engenharia Metabólica , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/química , Nanoestruturas/química , Óptica e Fotônica , Staphylococcus aureus
9.
Biosens Bioelectron ; 29(1): 76-81, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21889887

RESUMO

A novel molecular aptamer beacon (MAB) was designed by integrating a single-labeled hairpin-shaped aptamer and graphene oxide (GO). The hairpin-shaped aptamer was constructed with anti-ATP aptamer and another five nucleotides added to the 5'-end of the aptamer which are complementary to nucleotides at the 3'-end of the aptamer to form a hairpin-shaped probe. This newly designed MAB which acts as a low background signal platform was used for the ATP detection based on long-range resonance energy transfer (LrRET). In the absence of ATP, the adsorption of the dye-labeled hairpin-shaped aptamer on GO makes the dyes close proximity to GO surface resulting in high efficiency quenching of fluorescence of the dyes. Therefore, the fluorescence of the designed MAB is completely quenched by GO, and the system shows very low background. Conversely, and very importantly, upon the adding of ATP, the quenched fluorescence is recovered significantly, and ATP can be detected in a wide range of 5-2500µM with a detection limit of 2µM and good selectivity. Moreover, when the GO-based MAB was used in cellular ATP assays, preeminent fluorescence signals were obtained, thus the platform of GO-based MAB could be used to detect ATP in real-world samples.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Grafite , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Espectrometria de Fluorescência
10.
Anal Chem ; 83(21): 8130-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21923110

RESUMO

We presented a new aptamer biosensor for thrombin in this work, which was based on fluorescence resonance energy transfer (FRET) from upconverting phosphors (UCPs) to carbon nanoparticles (CNPs). The poly(acrylic acid) (PAA) functionalized UCPs were covalently tagged with a thrombin aptamer (5'-NH(2)- GGTTGGTGTGGTTGG-3'), which bound to the surface of CNPs through π-π stacking interaction. As a result, the energy donor and acceptor were taken into close proximity, leading to the quenching of fluorescence of UCPs. A maximum fluorescence quenching rate of 89% was acquired under optimized conditions. In the presence of thrombin, which induced the aptamer to form quadruplex structure, the π-π interaction was weakened, and thus, the acceptor was separated from the donor blocking the FRET process. The fluorescence of UCPs was therefore restored in a thrombin concentration-dependent manner, which built the foundation of thrombin quantification. The sensor provided a linear range from 0.5 to 20 nM for thrombin with a detection limit of 0.18 nM in an aqueous buffer. The same linear range was obtained in spiked human serum samples with a slightly higher detection limit (0.25 nM), demonstrating high robustness of the sensor in a complex biological sample matrix. As a practical application, the sensor was used to monitor thrombin level in human plasma with satisfactory results obtained. This is the first time that UCPs and CNPs were employed as a donor-acceptor pair to construct FRET-based biosensors, which utilized both the photophysical merits of UCPs and the superquenching ability of CNPs and thus afforded favorable analytical performances. This work also opened the opportunity to develop biosensors for other targets using this UCPs-CNPs system.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Carbono/química , Transferência Ressonante de Energia de Fluorescência , Nanopartículas , Fósforo/química , Trombina/análise , Trombina/metabolismo , Proteínas Sanguíneas/análise , Fluorescência , Humanos , Limite de Detecção
11.
Lab Chip ; 10(3): 313-9, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20091002

RESUMO

Droplet-based microfluidic chips have shown great advantages in fields of chemical and biological researches. Based on the different wettabilities of water, IL (ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate) and soybean oil in hydrophobic channels, three kinds of droplet pairs (including an alternating water-IL droplet chain, connected water-IL droplet pairs and separated water-IL droplet pairs) were generated for the first time in soybean oil on microfluidic chips containing double flow-focusing regions. The influences of fluid flow rate and channel geometry on droplet pair formation were carefully studied.


Assuntos
Algoritmos , Líquidos Iônicos/química , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Químicos , Óleo de Soja/química , Água/química , Misturas Complexas/química , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Exp Bot ; 59(9): 2529-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18544613

RESUMO

The effects of several hormones on pollen tube growth were compared in Torenia fournieri and it was found that IAA was the most effective, stimulating pollen tube growth and causing the shank part of pollen tubes to be slender and straighter. The role of IAA was investigated by studying the changes in ultrastructure and PM H(+)-ATPase distribution in the pollen tubes and the modification of the tube wall. Using the fluorescent marker FM4-64, together with transmission electron microscopy, it was shown that secretory vesicles and mitochondria increased in IAA-treated tubes. Immunolocalization and fluorescence labelling, together with Fourier-transform infrared analysis, detected that IAA enhanced the level of PM H(+)-ATPase and the synthesis of pectins, and reduced the cellulose density in pollen tubes. Importantly, to observe the orientation of cellulose microfibrils in pollen tubes in situ, atomic force microscopy was used to examine the 'intact' tube wall. Atomic force microscopy images showed that cellulose microfibrils were parallel to each other in the subapical region of IAA-treated tubes, but disorganized in control tubes. All results provided new insights into the functions of cellulose microfibrils in pollen tube growth and direction, and revealed that the IAA-induced changes of pollen tubes were attributed to the increase in secretory vesicles, mitochondria, and PM H(+)-ATPase, and the modification of pectin and cellulose microfibrils in the tube wall.


Assuntos
Parede Celular/química , Ácidos Indolacéticos/farmacologia , Magnoliopsida/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Tubo Polínico/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Ácidos Indolacéticos/metabolismo , Magnoliopsida/química , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/metabolismo , Microscopia Eletrônica de Transmissão , Pectinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/química , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Compostos de Piridínio/análise , Compostos de Amônio Quaternário/análise
13.
Nucleic Acids Res ; 35(11): 3646-53, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17488850

RESUMO

Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson-Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.


Assuntos
DNA/química , Telômero/química , Sequência de Bases , Cistina/química , DNA/ultraestrutura , Quadruplex G , Guanina/química , Humanos , Microscopia de Força Atômica , Polietilenoglicóis/química , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA