Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biophotonics ; 16(12): e202300188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654080

RESUMO

BACKGROUND: As a new technology for treating dry eye diseases, phototherapy has attracted great attention, but the research on its safety and effectiveness is limited. In this study, the therapeutic effects of low-color-temperature light-emitting diodes on dry eye in humans, rabbits, and rats were investigated. METHODS: In clinical experiments, subjects in both groups read the same paper for 3 h under light sources of two color temperatures: 1900 K (low-color-temperature light-emitting diodes) or 4000 K (artificial fluorescent white light-emitting diodes). The differences in the non-invasive tear film breakup time, tear meniscus height, and conjunctival congestion scores before and after the experiment were compared between the two groups. In animal experiments, corneal epithelial barrier function and tear production of Sprague-Dawley rats and New Zealand white rabbits with dry eye were compared before and after low-color-temperature light-emitting diodes treatment. TUNEL staining and Western blotting were used to detect the apoptosis of corneal and conjunctival cells and the expression of inflammatory factor IL-1ß. RESULTS: Low-color-temperature light-emitting diodes prolonged tear film breakup time in patients with dry eye. Moreover, it increased tear secretion, decreased fluorescein sodium staining scores, corneal and conjunctival cell apoptosis, and inflammatory factor expression in rabbits and rats with dry eye. CONCLUSIONS: Low-color-temperature light-emitting diodes phototherapy can be used as an effective treatment for dry eye, reducing its symptoms and related ocular surface damage in humans, rabbits, and rats.


Assuntos
Síndromes do Olho Seco , Lágrimas , Humanos , Ratos , Coelhos , Animais , Temperatura , Lágrimas/metabolismo , Ratos Sprague-Dawley , Síndromes do Olho Seco/radioterapia , Síndromes do Olho Seco/tratamento farmacológico , Túnica Conjuntiva
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902225

RESUMO

Low-color-temperature light-emitting diodes (LEDs) (called 1900 K LEDs for short) have the potential to become a healthy light source due to their blue-free property. Our previous research demonstrated that these LEDs posed no harm to retinal cells and even protected the ocular surface. Treatment targeting the retinal pigment epithelium (RPE) is a promising direction for age-related macular degeneration (AMD). Nevertheless, no study has evaluated the protective effects of these LEDs on RPE. Therefore, we used the ARPE-19 cell line and zebrafish to explore the protective effects of 1900 K LEDs. Our results showed that the 1900 K LEDs could increase the cell vitality of ARPE-19 cells at different irradiances, with the most pronounced effect at 10 W/m2. Moreover, the protective effect increased with time. Pretreatment with 1900 K LEDs could protect the RPE from death after hydrogen peroxide (H2O2) damage by reducing reactive oxygen species (ROS) generation and mitochondrial damage caused by H2O2. In addition, we preliminarily demonstrated that irradiation with 1900 K LEDs in zebrafish did not cause retinal damage. To sum up, we provide evidence for the protective effects of 1900 K LEDs on the RPE, laying the foundation for future light therapy using these LEDs.


Assuntos
Antioxidantes , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos da radiação , Peixe-Zebra/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA