Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1028-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467582

RESUMO

Biochar, an organic carbonaceous matter, is a unique feed additive that is now being used in aquaculture industry to formulate a cost-effective and eco-friendly diet. This experiment (in door) was conducted over course of 90 days to determine the most effective form of biochar, produced from various sources, for supplementation in Moringa oleifera seed meal-based diet. These sources were: farmyard manure biochar, parthenium biochar (PB), vegetable waste biochar, poultry waste biochar (PWB) and corncob waste biochar, added at 2 g/kg concentration to determine the effect of supplementation on the growth indices, nutrient absorption, carcass composition, haematology and mineral status of Labeo rohita (rohu) fingerlings. The research design consisted of six test diets with three replications (6 × 3) of each. Total of 270 fingerlings (6.30 ± 0.020 g) were fed at 5% body weight and 15 of them were kept in separate steel tanks. The results indicated that PWB was most effective in improving weight gain (285.58 ± 4.54%) and feed conversion ratio (1.060 ± 0.040) compared to control diet and other test diets. The same type of biochar (PWB) produced the best results for nutrient digestibility, that is, crude protein, crude fat and gross energy and carcass composition. In terms of haematology and mineral status, PWB showed the best results. In conclusion, it was found that PWB significantly enhanced (p < 0.05) L. rohita fingerling's growth, carcass composition, nutrient digestibility, haematological parameters (red blood cells, white blood cells, platelets and haemoglobin) and mineral composition (Ca, Na, P, Mg, Fe, Mn, Zn, K and Cu) whereas PB negatively affected all parameters. It is anticipated that the potential use of biochar will increase in aquaculture industry, as research on its incorporation in fish feeds is still limited.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Composição Corporal , Carvão Vegetal , Cyprinidae , Dieta , Minerais , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Carvão Vegetal/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Composição Corporal/efeitos dos fármacos , Minerais/administração & dosagem , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/fisiologia
2.
Ecotoxicology ; 33(3): 296-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498245

RESUMO

This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.


Assuntos
Ciclídeos , Animais , Polietileno/toxicidade , Microplásticos/metabolismo , Plásticos , Exposição Dietética/efeitos adversos , Dieta , Nutrientes , Ração Animal/análise , Suplementos Nutricionais
3.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 366-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927171

RESUMO

The bioavailability, small size and direct absorption in the blood, make nanoparticles (NPs) a remarkable feed additive in the aquaculture industry. Therefore, dietary iron oxide nanoparticles (Fe2 O3 -NPs) were used to examine their effects on growth, nutrient absorption, body composition and blood indices in Cyprinus carpio (Common carp) fingerlings. Healthy C. carpio fingerlings (n = 270) were fed with six canola meal based experimental diets (D1-control, D2, D3, D4, D5, D6) supplemented with 0, 10, 20, 30, 40 and 50 mg/kg Fe2 O3 -NPs respectively. A total of 15 fingerlings (average initial weight 5.51 ± 0.04 g/fish) were kept in triplicates for 70 days. The results indicated that maximum growth performance, apparent digestibility coefficient, body composition and haematological parameters were observed in 40 mg/kg Fe2 O3 -NPs supplementation. All the experimental diets were significantly improved (p < 0.05) in all the above parameters than control diet. In the present research, the recommended dosage of Fe2 O3 -NPs as dietary supplement is 40 mg/kg for improving the growth, nutrient absorption, body composition and haematological indices in C. carpio fingerlings. Hence, this study demonstrates the potential of NPs to improve the health of fish.


Assuntos
Carpas , Animais , Exposição Dietética , Suplementos Nutricionais/análise , Dieta/veterinária , Composição Corporal , Nanopartículas Magnéticas de Óxido de Ferro , Nutrientes , Ração Animal/análise
4.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 163-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37609860

RESUMO

Edwardsiella tarda is one of the most common causes of fish diseases that hinder aquaculture. Oxidative stress in farm animals can induce a number of pathological disorders, production and general animal welfare. The use of exogenous dietary nonenzymatic antioxidants such as alpha-lipoic acid (ALA) can stop a pro-oxidant state and thus appears to have the potential to modulate the immune system and protect fish from bacterial infection. Thus, this study investigates the stimulatory effect of dietary ALA on growth performance, antioxidant capacity, liver enzymes, immunity and protection of African catfish, Clarias gariepinus (B.), against an infection with E. tarda. Five isonitrogenous and isocaloric diets (400 g/kg of crude protein) containing ALA at doses of 0.0 (control), 500, 1000, 1500 or 2000 mg/kg diet were served to 300 juveniles of African catfish (mean weight = 8.2 ± 0.2 g) adequately thrice per day for 12 weeks. Thereafter, 0.1 mL of E. tarda (ATCC 15947; 1.0 × 108 CFU/mL) was intraperitoneally injected into 10 fish from each tank and was monitored for 14 days. The results showed that ALA-fortified diets significantly boosted the fish growth, feed consumption and utilization and feed conversion ratio but no did not affect fish survival rate. The highest final fish weight (g), weight growth (g) and weight gain (%) were all considerably higher in fish fed with ALA-fortified diets (p < 0.05), especially from 1000 to 200 mg/kg ALA than the control group. Also, an enhanced hemato-biochemical, antioxidant and immune indices were noticed in African catfish-fed ALA-enriched diets. In a dose-dependent order, the levels of haematological indices such Ht, Hb, RBCs, WBCs and platelets were markedly increased (p < 0.05). Additionally, fish fed with ALA-based diets showed substantial (p < 0.05) declines in aspartate and alanine aminotransferase values, with the lowest values being found in the 2000 mg/kg diet while control group had highest values. Further, African catfish fed the feed fortified with 2000 mg ALA/kg diet showed the highest levels of lysozyme, respiratory burst, proteases and esterase activities (p < 0.05). Following exposure of fish to E. tarda infection, a significant reduction in the mortality was obtained in African catfish fed with ALA-based diets, especially from 1500 to 2000 mg ALA/kg diet (3.3%); while fish fed with the control diet had highest mortality (86.7%). Therefore, diets supplemented with ALA evoked fish growth performance, antioxidants and nonspecific immunity of African catfish. Also, resistance of African catfish to E. Tarda infection were raised when fed ALA-fortified diets at optimum inclusion rate of 1300 mg ALA/kg diet.


Assuntos
Peixes-Gato , Doenças dos Peixes , Ácido Tióctico , Animais , Antioxidantes/metabolismo , Ácido Tióctico/farmacologia , Edwardsiella tarda/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Fígado/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/metabolismo
5.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067504

RESUMO

In the present research, Livistona chinensis leaf extracts were utilized as reductants to bio-fabricate silver nanoparticles (LC-AgNPs) and this was followed by the evaluation of their antioxidant, antibacterial, and anticancer potential. Multiple parameters were optimized for the formation and fidelity of LC-AgNPs. The color shift of the reaction mixture from yellow to dark brown confirmed the LC-AgNPs formation. UV/VIS spectroscopy exhibited a surface plasmon resonance (SPR) band at 436 nm. The Fourier transform infrared (FTIR) spectroscopy spectrum depicted phytochemicals in the plant extract acting as bio-reducers for LC-AgNPs synthesis. The XRD pattern confirmed the presence of LC-AgNPs by showing peaks corresponding to 2θ angle at 8.24° (111), 38.16° (200), 44.20° (220), and 64.72° (311). Zetasizer analysis exhibited size distribution by intensity of LC-AgNPs with a mean value of 255.7 d. nm. Moreover, the zeta potential indicated that the AgNPs synthesized were stable. The irregular shape of LC-AgNPs with a mean average of 38.46 ± 0.26 nm was found by scanning electron microscopy. Furthermore, the antioxidant potential of LC-AgNPs was examined using a DPPH assay and was calculated to be higher in LC-AgNPs than in leaf extracts. The calculated IC50 values of the LC-AgNPs and plant extract are 85.01 ± 0.17 and 209.44 ± 0.24, respectively. The antibacterial activity of LC-AgNPs was investigated against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis as well as Staphylococcus aureus, and maximum potential was observed after 24 h against P. aeruginosa. Moreover, LC-AgNPs exhibited maximum anticancer potential against TPC1 cell lines compared to the plant extract. The findings suggested that LC-AgNPs could be used as antioxidant, antibacterial, and anticancer agents for the cure of free-radical-oriented bacterial and oncogenic diseases.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Radicais Livres , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Plants (Basel) ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176951

RESUMO

Developmental activities have escalated mercury (Hg) content in the environment and caused food security problems. The present investigation describes mercury-incited stress in Lens culinaris (lentil) and its mitigation by supplementation of sodium nitroprusside (SNP) and strigolactone (GR24). Lentil exposure to Hg decreased root and shoot length, relative water content and biochemical variables. Exogenous application of SNP and GR24 alone or in combination enhanced all of the aforementioned growth parameters. Hg treatment increased electrolyte leakage and malondialdehyde content, but this significantly decreased with combined application (Hg + SNP + GR24). SNP and GR24 boosted mineral uptake and reduced Hg accumulation, thus minimizing the adverse impacts of Hg. An increase in mineral accretion was recorded in lentil roots and shoots in the presence of SNP and GR24, which might support the growth of lentil plants under Hg stress. Hg accumulation was decreased in lentil roots and shoots by supplementation of SNP and GR24. The methylglyoxal level was reduced in lentil plants with increase in glyoxalase enzymes. Antioxidant and glyoxylase enzyme activities were increased by the presence of SNP and GR24. Therefore, synergistic application of nitric oxide and strigolactone protected lentil plants against Hg-incited oxidative pressure by boosting antioxidant defense and the glyoxalase system, which assisted in biochemical processes regulation.

7.
J Hazard Mater ; 408: 124852, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383453

RESUMO

The present study reveals the effect of mercury (Hg) and sodium nitroprusside (SNP) on plant growth and metabolism in soybean cultivars (Pusa-24, Pusa-37and Pusa-40). Mercury stress decreased growth and biomass yield, and gas exchange attributes in all soybean cultivars. External supplementation of SNP mitigated Hg toxicity by improving growth and gas exchange parameters. Electrolyte leakage (EL) increased accompanied with elevated levels of malondialdehyde (MDA) and H2O2 under Hg stress, however, they were found to be reduced in all cultivars upon the exogenous application of SNP. The activities of anti-oxidative enzymes, superoxide dismutase and catalase (SOD and CAT) and those enzymes involved in the ascorbate-glutathione pathway were impaired by Hg stress, but they were regulated by the application of SNP. Accumulation of Hg and NO in the shoots and roots were also regulated by the application of NO. Although, all three cultivars were affected by Hg stress, Pusa-37 was relatively less affected. Mercury stress affected the growth and development of different soybean cultivars, but Pusa-37 being tolerant was less affected. Pusa-37 was found to be more responsive to SNP than Pusa-24, Pusa-40 under Hg toxicity. The external supplementation of SNP could be a sustainable approach to economically utilize Hg affected soils.


Assuntos
Mercúrio , Doadores de Óxido Nítrico , Antioxidantes/farmacologia , Catalase/metabolismo , Peróxido de Hidrogênio/farmacologia , Mercúrio/toxicidade , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Estresse Oxidativo , Glycine max/metabolismo , Superóxido Dismutase/metabolismo
8.
Fish Shellfish Immunol ; 102: 316-325, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371257

RESUMO

Chlorpyrifos (CPF) is one of the predominant water pollutants associated with inflammation and immunodepression in aquatic animals. In this study, menthol oil (MNT) impacted the immunity, antioxidative, and anti-inflammatory responses against CPF toxicity in Nile tilapia. Fish fed two diets with or without MNT and placed in four groups (control, CPF, MNT, and CPF/MNT). After 30 days, fish fed MNT displayed higher growth performance and lower FCR than CPF-intoxicated fish without feeding MNT (P < 0.05). The survival rate of fish was reduced in the CPF group without MNT feeding (P < 0.05). Blood Hb, PCV, RBCs, and WBCs were decreased in fish by CPF toxicity, while the highest Hb, PCV, RBCs, and WBCs were observed in fish fed MNT followed by those fed the control without CPF toxicity (P < 0.05). Fish fed MNT had the highest total protein, albumin, and globulin, as well as the lowest urea, bilirubin, and creatinine after 15 and 30 days. However, fish under CPF toxicity had the most inferior total protein, albumin, and globulin, as well as the highest urea, bilirubin, and creatinine among the groups (P < 0.05). The enzyme activities of ALP and ALT displayed low levels by MNT with or without CPF exposure than fish fed without MNT with or without CPF exposure after 15 and 30 days (P < 0.05). The lysozyme and phagocytic activities displayed reduced levels by CPF without MNT feeding after 15 and 30 days, while increased activities were noticed by MNT feeding without CPF toxicity followed by fish fed MNT with CPF toxicity (P < 0.05). The transcription of CAT and GPX genes displayed upregulated levels in tilapia fed MNT and exposed to CPF (P < 0.05). Also, CPF toxicity increased the transcription of the IFN-γ gene but decreased the IL-8 and IL-1ß genes. The transcription of HSP70 displayed lower levels (P < 0.05) by CPF without supplementing MNT than fish fed MNT and exposed to CPF. Histopathological analysis revealed that inflammation existed in the liver, gills, and intestine of tilapia due to CPF toxicity while MNT protected tissues from inflammation. To conclude, MNT activated the immunity, antioxidative, and anti-inflammatory responses of Nile tilapia under CPF toxicity.


Assuntos
Clorpirifos/toxicidade , Ciclídeos/imunologia , Doenças dos Peixes/tratamento farmacológico , Inflamação/veterinária , Inseticidas/toxicidade , Mentol/metabolismo , Óleos Voláteis/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Doenças dos Peixes/imunologia , Doenças dos Peixes/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Mentol/administração & dosagem , Óleos Voláteis/administração & dosagem , Distribuição Aleatória , Poluentes Químicos da Água/toxicidade
9.
Fish Shellfish Immunol ; 103: 421-429, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32470510

RESUMO

The role of mannanoligosaccharide (MOS) in reducing the adverse effects of chlorpyrifos (CPF) toxicity in tilapia was evaluated in the present study. Fish were allotted into four groups and fed the basal diet or MOS and exposed to CPF (control, CPF, MOS, and MOS/CPF) for 30 days. Fish fed MOS revealed higher growth and survival rates and lower FCR than CPF-intoxicated fish (P < 0.05). The Hb, PCV, RBCs, and WBCs variables were lowered by CPF toxicity and increased by MOS (P < 0.05). The values of total protein (sTP), albumin (ALB), globulin (GLB), lysozyme (LZM), and phagocytic activities (PA) decreased whereas, ALP, ALT, AST, urea, bilirubin (BIL), and creatinine (CR) were increased by CPF toxicity. However, dietary MOS increased the sTP, ALB, GLB, LZM, and PA and decreased the ALP, ALT, AST, BIL, and CR. The PA and phagocytic index displayed higher levels by MOS feeding than the other groups (P < 0.05). The lowest mRNA level of GPX1 (cellular GPX) gene was observed in fish of the CPF group, while the highest level was shown in the MOS/CPF group (P < 0.05). Fish in the control and CPF groups displayed downregulated CAT whereas the expression of GPX and CAT genes was higher in fish of the MOS/CPF group than fish in the MOS group (P < 0.05). MOS upregulated the expression of HSP70 gene with CPF toxicity. Fish of the CPF and MOS/CPF groups displayed upregulated CASP3, IFN-γ, and IL-8 genes. Fish of the CPF group exhibited the lowest IL-1ß, while fish of the MOS/CPF group showed upregulated IL-1ß. The intoxication with CPF induced histopathological inflammations in the gills, intestine, and liver tissues, while dietary MOS protected against inflammation. In summary, dietary MOS is recommended as an immunostimulant to counteract the inflammatory impacts of waterborne CPF toxicity in Nile tilapia.


Assuntos
Antioxidantes/metabolismo , Clorpirifos/toxicidade , Ciclídeos/imunologia , Expressão Gênica/imunologia , Mananas/metabolismo , Oligossacarídeos/metabolismo , Poluentes Químicos da Água/toxicidade , Ração Animal/análise , Animais , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Inseticidas/toxicidade , Mananas/administração & dosagem , Oligossacarídeos/administração & dosagem , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA