Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunotoxicol ; 17(1): 51-58, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32124652

RESUMO

Nonclinical immunotoxicity evaluation is an important component of safety assessment for pharmaceuticals. One in vitro assay that can be applied in a weight of evidence assessment is the human lymphocyte activation (HuLA) assay, an antigen recall assay, similar in many respects to the in vivo T-cell-dependent antibody response (TDAR) in that cooperation of multiple immune cell types are needed to produce responses. This assay uses human cells and is more amenable than the TDAR to compound ranking and mechanistic studies. The HuLA assay requires less time and drug than TDAR assays, uses a relevant antigen (influenza), reflects a human immune response, and applies principles of the 3Rs to non-clinical safety assessment. Peripheral blood mononuclear cells (PBMC) from flu-immunized donors are re-stimulated with flu-vaccine in the presence of test articles, and proliferation is measured. Published data demonstrate the applicability of the HuLA assay, but it has not been evaluated for reproducibility across testing sites. To evaluate assay reproducibility, scientists from a consortium of institutions conducted the assay in parallel, using a common pool of donor PBMC, influenza vaccine, and known immunosuppressant compounds (cyclosporine A and mycophenolic acid). The HuLA assay was highly reproducible in identification of inhibition of antigen-specific responses, and there was significant agreement across testing sites in the half maximal inhibitory concentration (IC50) values. Intra-site variability was the largest contributor to the variability observed within the assay. The HuLA assay was demonstrated to be ideally suited to comparing multiple compounds (i.e. compound ranking or benchmarking) within the same assay. Overall, the data reported herein support the HuLA assay as a useful tool in mechanistic evaluations of antigen-specific immune responses.


Assuntos
Bioensaio/instrumentação , Testes Imunológicos de Citotoxicidade/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ativação Linfocitária/efeitos dos fármacos , Células Cultivadas , Ciclosporina/farmacologia , Voluntários Saudáveis , Humanos , Imunossupressores/farmacologia , Vacinas contra Influenza/imunologia , Concentração Inibidora 50 , Leucócitos Mononucleares , Ativação Linfocitária/imunologia , Ácido Micofenólico/farmacologia , Reprodutibilidade dos Testes
2.
Artigo em Inglês | MEDLINE | ID: mdl-28065821

RESUMO

INTRODUCTION: The importance of drug-induced effects on the inotropic state of the heart is well known. Unlike hemodynamic and cardiac electrophysiological methods, which have been routinely used in drug safety testing for years, the non-clinical assessment of drug effects on myocardial contractility is used less frequently with no established translation to humans. The goal of these studies was to determine whether assessment of alternate measures of cardiac inotropy could detect drug-induced changes in the contractile state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. This study also evaluated drug-induced effects on lusitropy (relaxation) parameters of the heart. METHODS: A double 4×4 Latin square study design using Beagle dogs (n=8) was conducted. Drugs were administrated orally. Arterial blood pressure (BP), left ventricular pressure (LVP) and the electrocardiogram (ECG) were assessed across different laboratories using the same protocol. Each of the six laboratories studied at least 2 drugs (one positive inotrope (pimobendan or amrinone) and one negative inotrope (itraconazole or atenolol) at 3 doses selected to match clinical exposure data and a vehicle control). Animals were instrumented with an ITS telemetry system or DSI's D70-PCTP or PhysioTel™ Digital system. The data acquisition and analysis systems used were Ponemah, Notocord or EMKA. RESULTS: The derived inotropic and lusitropic parameters evaluated included peak systolic and end diastolic LVP, LVdP/dtmax, LVdP/dt40, QA interval, LVdP/dtmin and Tau. This study showed that LVdP/dt40 provided essentially identical results to LVdP/dtmax qualifying it as an index to assess drug effects on cardiac contractility. LVdP/dt40 provided an essentially identical assessment to that of LVdP/dtmax. The QA interval did not react sensitively to the drugs tested in this study; however, it did detect large effects and could be useful in early cardiovascular safety studies. The lusitropic parameter, LVdP/dtmin, was modestly decreased, and Tau was increased, by atenolol and itraconazole. At the doses tested, amrinone and pimobendan produced no changes in LVdP/dtmin while Tau was modestly increased. The drugs did not produce effects on BP, HR or the ECG at the doses tested. Blood samples were drawn to confirm drug exposures predicted from independent pharmacokinetic studies. DISCUSSION: These findings indicate that this experimental model can accurately and consistently detect changes in cardiac contractility, across multiple sites and instrumentation systems. While LVdP/dt40 produced responses similar to LVdP/dtmax, the QA interval and lusitropic parameters LVdP/dtmin and Tau were not markedly changed at the dose of drugs tested. Further studies with drugs that affect early diastolic relaxation through calcium handling are needed to better evaluate drug-induced changes on lusitropic properties of the heart.


Assuntos
Cardiotônicos/farmacologia , Frequência Cardíaca/fisiologia , Contração Miocárdica/fisiologia , Função Ventricular Esquerda/fisiologia , Proteínas tau/sangue , Animais , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/fisiologia , Itraconazol/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA