RESUMO
Single-cell omics technologies have revolutionized molecular profiling by providing high-resolution insights into cellular heterogeneity and complexity. Traditional bulk omics approaches average signals from heterogeneous cell populations, thereby obscuring important cellular nuances. Single-cell omics studies enable the analysis of individual cells and reveal diverse cell types, dynamic cellular states, and rare cell populations. These techniques offer unprecedented resolution and sensitivity, enabling researchers to unravel the molecular landscape of individual cells. Furthermore, the integration of multimodal omics data within a single cell provides a comprehensive and holistic view of cellular processes. By combining multiple omics dimensions, multimodal omics approaches can facilitate the elucidation of complex cellular interactions, regulatory networks, and molecular mechanisms. This integrative approach enhances our understanding of cellular systems, from development to disease. This review provides an overview of the recent advances in single-cell and multimodal omics for high-resolution molecular profiling. We discuss the principles and methodologies for representatives of each omics method, highlighting the strengths and limitations of the different techniques. In addition, we present case studies demonstrating the applications of single-cell and multimodal omics in various fields, including developmental biology, neurobiology, cancer research, immunology, and precision medicine.
Assuntos
Multiômica , Medicina de Precisão , Medicina de Precisão/métodosRESUMO
Soy sauce (SS) is a traditional fermented seasoning. Although fermented foods have diverse health beneficial effects, SS intake has been discouraged because of its high salt level. This study was designed to evaluate the antiobesity outcomes of SS and the potential involvement of salt content in SS by adding a high-salt group. Sprague-Dawley rats were randomly assigned into four groups: normal diet (ND, 10% fat of total kcal), high-fat diet (HD, 60% fat of total kcal), HD with salt water (HDSW, NaCl = 8%), and HD with SS (HDSS, NaCl = 8%). SS significantly decreased HD-induced body weight gain and lipogenic gene expression without affecting food consumption. Moreover, SS also reduced hepatic injury and lipid accumulation, and also improved hyperlipidemia. Furthermore, SS decreased the mRNA levels related to obesity-derived inflammatory responses, while HDSW did not change the levels of those markers. These observations indicate that SS ameliorates obesity in HD-fed obese rats by attenuating dyslipidemia. Moreover, SS might also have an anti-inflammatory effect in HD-induced obesity, which requires further investigation. Most importantly, SS offers these beneficial effects regardless of its high salt content, implying that different dietary salt sources lead to the distinct health outcomes. In conclusion, the findings of this study improve the understanding of the functional effect of SS.
Assuntos
Dieta Hiperlipídica , Alimentos de Soja , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Cloreto de Sódio , Ratos Sprague-Dawley , Obesidade/etiologia , Obesidade/genética , Peso Corporal , Cloreto de Sódio na Dieta/efeitos adversosRESUMO
With the development of nanotechnology, nanomaterials have been widely used in the development of commercial products. In particular, zinc oxide nanoparticles (ZnONPs) have been of great interest due to their extraordinary properties, such as semiconductive, piezoelectric, and absorbance properties in UVA and UVB (280-400 nm) spectra. However, recent studies have investigated the toxicity of these ZnONPs; therefore, a ZnONP screening tool is required for human health and environmental problems. In this study, we propose a detection method for ZnONPs using quartz crystal microbalance (QCM) and DNA. The detection method was based on the resonance frequency shift of the QCM. In detail, two different complementary DNA strands were used to conjugate ZnONPs, which were subjected to mass amplification. One of these DNA strands was designed to hybridize to a probe DNA immobilized on the QCM electrode. By introducing the ZnONP conjugation, we were able to detect ZnONPs with a detection limit of 100 ng/mL in both distilled water and a real sample of drinking water, which is 3 orders less than the reported critical harmful concentration of ZnONPs. A phosphate terminal group, which selectively interacts with a zinc oxide compound, was also attached at one end of a DNA linker and was attributed to the selective detection of ZnONPs. As a result, better selective detection of ZnONPs was achieved compared to gold and silicon nanoparticles. This work demonstrated the potential of our proposed method as a ZnONP screening tool in real environmental water systems.
RESUMO
Vitamin D appears to either promote or inhibit neovascularization in a disease context-dependent manner. The effects of vitamin D, alone or in combination with niacin, on endothelial cell (EC) angiogenic function and on revascularization in obese animals with peripheral ischemia are unknown. Here, we report that supplementation of high palmitate medium with vitamin D, niacin or both vitamins increased EC tube formation, which relies primarily on cell migration, and also maintained tube stability over time. Transcriptomic analyses revealed that both vitamins increased stress response and anti-inflammatory gene expression. However, vitamin D decreased cell cycle gene expression and inhibited proliferation, while niacin induced stable expression of miR-126-3p and -5p and maintained cell proliferation in high palmitate. To assess vascular regeneration, diet-induced obese mice received vitamin D, niacin or both vitamins following hind limb ischemic injury. Niacin, but not vitamin D or combined treatment, improved recovery of hind limb use. Histology of tibialis anterior sections revealed no improvements in revascularization, regeneration, inflammation or fibrosis with vitamin D or combined treatment. In summary, although both vitamin D and niacin increased angiogenic function of EC cultures in high fat, only niacin improved recovery of hind limb use following ischemic injury in obese mice. It is possible that inhibition of cell proliferation by vitamin D in high-fat conditions limits vascular regeneration and recovery from peripheral ischemia in obesity.
Assuntos
Dieta , Isquemia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Niacina/farmacologia , Veias/patologia , Vitamina D/farmacologia , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Inflamação , Masculino , Síndrome Metabólica/patologia , Camundongos , Camundongos Obesos , Microcirculação , Neovascularização Patológica , Ácido Palmítico/farmacologia , Regeneração , TranscriptomaRESUMO
Prior to the advent of the next-generation heater for wearable/on-body electronic devices, various properties are required, including conductivity, transparency, mechanical reliability, and conformability. Expansion to two-dimensional (2D) structure of metallic nanowires based on network- and mesh-type geometries has been widely exploited for realizing these heaters. However, the routes led to many drawbacks such as the low-density cross-bar linking, self-aggregation of wire, and high junction resistance. Although 2D carbon nanomaterials such as graphene and reduced graphene oxide (rGO) have shown their potentials for the purpose, CVD-grown graphene with sufficiently high conductivity was limited due to its poor processability for large-area applications, while rGO fabricated with a complex reduction process involving the use of toxic chemicals suffered from a low electrical conductivity. In this study, we demonstrate a simple and robust process, utilizing electrostatic assembling of negatively charged MXene flakes on a positively treated surface of substrate, for fabricating a metal-like 2D MXene thin film heater (TFH). Our TFH showed a high optical property (>65%), low sheet resistance (215 Ω/sq), fast electrothermal response (within dozens of seconds) with an intrinsically high electrical conductivity, and mechanical flexibility (up to 180° bending). Its capability for forming a firm and stable ionic-type interface with a counterpart surface allows us to develop a shape-adaptable and patchable thread heater (TH) that can be shaped on diverse substrates even under harsh conditions of conventional sewing or weaving processes. This work suggests that our shape-adaptable MXene heaters are potentially suitable not only for wearable devices for local heating and defrosting but also for a variety of emerging applications of soft actuators and wearable/flexible healthcare monitoring and thermotherapy.
RESUMO
To investigate whether dysregulated selection of autoreactive marginal zone (MZ) B cells is involved in autoimmune diseases, we examined MZ B cell profile in multiple strains of mice, and found that type II collagen (CII)-reactive autoreactive CD80high MZ B cells spontaneously developed in the DBA/1, but not in C57BL/6 mice. CD80high MZ B cells that were characteristically found in DBA/1 mice expressed higher levels of TACI, SLAM3, and SLAM6 than the usual CD80low MZ B cells. Notably, the CD80high MZ B cells were more sensitive to ibrutinib, a Bruton's tyrosine kinase inhibitor, than CD80low MZ or follicular B cells and their transient depletion via intravenous injection of ibrutinib significantly delayed the induction of collagen-induced arthritis (CIA). In summary, we suggest that the positive selection of CII-reactive CD80high MZ B cells is a critical homeostatic process predisposing the DBA/1 mice to the CIA induction.
Assuntos
Artrite Experimental/imunologia , Linfócitos B/imunologia , Colágeno Tipo II/imunologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Autoimunidade/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Antígeno B7-1/metabolismo , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismoRESUMO
BACKGROUND: The purpose of this study is to investigate and analyze the traditional knowledge of medicinal plants used by residents in Gayasan National Park in order to obtain basic data regarding the sustainable conservation of its natural plant ecosystem. METHODS: Data was collected using participatory observations and in-depth interviews, as the informants also become investigators themselves through attending informal meetings, open and group discussions, and overt observations with semi-structured questionnaires. Quantitative analyses were accomplished through the informant consensus factor (ICF), fidelity level, and inter-network analysis (INA). RESULTS: In total, 200 species of vascular plants belonging to 168 genera and 87 families were utilized traditionally in 1,682 ethnomedicianal practices. The representative families were Rosaceae (6.5%) followed by Asteraceae (5.5%), Poaceae (4.5%), and Fabaceae (4.0%). On the whole, 27 kinds of plant-parts were used and prepared in 51 various ways by the residents for medicinal purposes. The ICF values in the ailment categories were muscular-skeletal disorders (0.98), pains (0.97), respiratory system disorders (0.97), liver complaints (0.97), and cuts and wounds (0.96). In terms of fidelity levels, 57 plant species showed fidelities levels of 100%. Regarding the inter-network analysis (INA) between ailments and medicinal plants within all communities of this study, the position of ailments is distributed into four main groups. CONCLUSION: The results of the inter-network analysis will provide a suitable plan for sustainable preservation of the national park through a continued study of the data. Particular species of medicinal plants need to be protected for a balanced plant ecosystem within the park. Consequently, through further studies using these results, proper steps need to be established for preparing a wise alternative to create a sustainable natural plant ecosystem for Gayasan National Park and other national parks.
Assuntos
Medicina Tradicional , Plantas Medicinais , Idoso , Idoso de 80 Anos ou mais , Conservação dos Recursos Naturais , Feminino , Humanos , Conhecimento , Masculino , Pessoa de Meia-Idade , República da CoreiaRESUMO
In this study we tried to prepare stable water-in-oil-in-water (W/O/W) emulsions using polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier and whey protein isolate (WPI) as a hydrophilic emulsifier. At first, water-in-oil (W/O) emulsions was prepared, and then 40 wt% of this W/O emulsion was homogenized with 60 wt% aqueous solution of different WPI contents (2, 4, and 6 wt% WPI) using a high-pressure homogenizer (14 and 22 MPa) to produce W/O/W emulsions. The mean size of final W/O/W droplets ranged from 3.3 to 9.9 microm in diameter depending on the concentrations of PGPR and WPI. It was shown that most of the W/O/W droplets were small (<5 microm) in size but a small population of large oil droplets (d > 20 microm) was also occasionally observed. W/O/W emulsions prepared at the homogenization pressure of 22 MPa had a larger mean droplet size than that prepared at 14 MPa, and showed a microstructure consisting of mainly approximately 6 to 7-microm droplets. When a water-soluble dye PTSA as a model ingredient was loaded in the inner water phase, all W/O/W emulsions showed a high encapsulation efficiency of the dye (>90%) in the inner water phase. Even after 2 wk of storage, >90% of the encapsulated dye still remained in the inner water phase; however, severe droplet aggregation was observed at relatively high PGPR and WPI concentrations.