Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Aging Cell ; 22(9): e13909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395319

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disability associated with human aging. Yet, there are no approved measures for preventing or treating this debilitating condition. With its slow progression, continuous and safe approaches are critical for ARHL treatment. Nicotinamide Riboside (NR), a NAD+ precursor, is well tolerated even for long-term use and is already shown effective in various disease models including Alzheimer's and Parkinson's disease. It has also been beneficial against noise-induced hearing loss and in hearing loss associated with premature aging. However, its beneficial impact on ARHL is not known. Using two different wild-type mouse strains, we show that long-term NR administration prevents the progression of ARHL. Through transcriptomic and biochemical analysis, we find that NR administration restores age-associated reduction in cochlear NAD+ levels, upregulates biological pathways associated with synaptic transmission and PPAR signaling, and reduces the number of orphan ribbon synapses between afferent auditory neurons and inner hair cells. We also find that NR targets a novel pathway of lipid droplets in the cochlea by inducing the expression of CIDEC and PLIN1 proteins that are downstream of PPAR signaling and are key for lipid droplet growth. Taken together, our results demonstrate the therapeutic potential of NR treatment for ARHL and provide novel insights into its mechanism of action.


Assuntos
NAD , Presbiacusia , Humanos , Animais , Camundongos , Receptores Ativados por Proliferador de Peroxissomo , Presbiacusia/tratamento farmacológico , Presbiacusia/prevenção & controle , Cóclea , Suplementos Nutricionais
2.
Phytomedicine ; 115: 154818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187105

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic, relapsing skin disease accompanied by itchy and dry skin. AD is caused by complex interactions between innate and adaptive immune response. AD treatment include glucocorticoids and immunosuppressants. However, long-term treatment can have serious side effects. Thus, an effective AD treatment with fewer side effects is required. Natural materials, including herbal medicines, have potential applications. PURPOSE: This study evaluated the in vivo and in vitro therapeutic effects of BS012, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts, on AD and investigated the underlying metabolic mechanisms. METHODS: The anti-inflammatory effects of BS012 were assessed using a mouse model of AD induced by 1­chloro-2,4-dinitrobenzene (DNCB) and in tumor necrosis factor-alpha/interferon-gamma (TNF-α/IFN-γ) stimulated normal human epidermal keratinocytes (NHEKs). In DNCB-induced mice, total dermatitis score, histopathological analysis, and immune cell factors were assessed to evaluate the anti-atopic activity. In TNF-α/IFN-γ-stimulated NHEKs, pro-inflammatory cytokines, chemokines, and related signaling pathways were investigated. Serum and intracellular metabolomics were performed to identify the metabolic mechanism underlying the therapeutic effects of BS012 treatment. RESULTS: In DNCB-induced mice, BS012 showed potent anti-atopic activity, including reducing AD-like skin lesions and inhibiting the expression of Th2 cytokines and thymic stromal lymphopoietin. In TNF-α/IFN-γ-stimulated keratinocytes, BS012 dose-dependently inhibited the expression of pro-inflammatory cytokines and chemokines by blocking nuclear factor-kappa B and signal transducer and activator of transcription signaling pathways. Serum metabolic profiles of mice revealed significant changes in lipid metabolism related to inflammation in AD. Intracellular metabolome analysis revealed that BS012 treatment affected the metabolism associated with inflammation, skin barrier function, and lipid organization of the stratum corneum. CONCLUSION: BS012 exerts anti-atopic activity by reducing the Th2-specific inflammatory response and improving skin barrier function in AD in vivo and in vitro. These effects are mainly related to the inhibition of inflammation and recovery of metabolic imbalance in lipid organization. BS012, a novel combination with strong activity in suppressing the Th2-immune response, could be a potential alternative for AD treatment. Furthermore, the metabolic mechanism in vivo and in vitro using a metabolomics approach will provide crucial information for the development of natural products for AD treatment.


Assuntos
Asarum , Cinnamomum aromaticum , Dermatite Atópica , Platycodon , Humanos , Animais , Camundongos , Dermatite Atópica/patologia , Asarum/metabolismo , Cinnamomum aromaticum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dinitroclorobenzeno , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Quimiocinas/metabolismo , Interferon gama/metabolismo , Dinitrobenzenos , Lipídeos , Pele/metabolismo , Camundongos Endogâmicos BALB C
3.
J Toxicol Environ Health B Crit Rev ; 24(3): 95-118, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33357071

RESUMO

Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.


Assuntos
Cádmio/toxicidade , Curcumina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Exposição Ambiental/efeitos adversos , Sequestradores de Radicais Livres/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
4.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066164

RESUMO

Ginger (Zingiber officianale), the most widely consumed species, is traditionally used as a folk medicine to treat some inflammatory diseases in China and Korea. However, the functional activity of steamed ginger extract on gastric ulcers has not been previously explored. The present study aimed to investigate antiulcer activity of steamed ginger extract (GGE03) against ethanol (EtOH)/HCl-induced gastric ulcers in a rat model. GGE03 (100 mg/kg) was orally administered for 14 days to rats before oral intubation of an EtOH/HCl mixture to induce gastric damage. Pretreatment with GGE03 markedly protected the formation of microscopic pathological damage in the gastric mucosa. Further, administration of GGE03 significantly increased mucosal total nitrate/nitrite production in gastric tissues, and elevated total GSH content, catalase activity and superoxide dismutase (SOD) expression as well as decreasing lipid peroxidation and myeloperoxidase (MPO) activity. Underlying protective mechanisms were examined by assessing inflammation-related genes, including nuclear factor-κB (NF-κB), prostaglandin E2 (PGE2), and pro-inflammatory cytokines levels. GGE03 administration significantly reduced the expression of NF-κB and pro-inflammatory cytokines. Our findings suggest that GGE03 possesses antiulcer activity by attenuating oxidative stress and inflammatory responses.


Assuntos
Antiulcerosos/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Úlcera Gástrica/tratamento farmacológico , Zingiber officinale/química , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/química , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Enzimas/metabolismo , Etanol/toxicidade , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Gastrite/genética , Gastrite/metabolismo , Ácido Clorídrico/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos Sprague-Dawley , Vapor , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Úlcera Gástrica/prevenção & controle
5.
Food Chem Toxicol ; 135: 110873, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31600566

RESUMO

In this study, the protective effects of Croton hookeri (CH) extract on renal injury were investigated in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by a single injection of STZ (45 mg/kg) to Sprague-Dawley rats. After 5 days, CH extract (200 mg/kg) was administered daily by oral gavage for 2 weeks. Administration of CH extracts significantly reduced blood glucose levels in STZ-induced diabetic rats. STZ-induced changes in total cholesterol, LDL, HDL, ALT, AST, BUN, and serum creatinine levels were significantly restored by treatment with CH extract. Abnormal levels of SOD, catalase, glutathione, and oxidized GSH (GSSG) in STZ-treated rats were also significantly recovered by CH extract treatment. CH extract markedly reduced the expression of collagen-1, fibronectin, and α-SMA in the kidney of STZ-induced diabetic rats. In particular, oxidative DNA damages, MDA, TGF-ß, IL-1ß, and IL-6 levels were significantly reduced in STZ-treated rats following treatment with CH extract, whereas IL-10 showed opposite trend. STZ-induced SIRT1, SIRT3 downregulation and cloudin-1 upregulation in the kidney were dramatically recovered by CH extract treatment. Our data suggest that CH extract protects against diabetic-induced nephropathy by inhibiting oxidative stress and inflammation. Therefore, it has potential as a food supplement to alleviate renal dysfunction caused by diabetes-induced nephropathy.


Assuntos
Croton/química , Nefropatias Diabéticas/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Biomarcadores/urina , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/urina , Alimento Funcional , Produtos Finais de Glicação Avançada/metabolismo , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estreptozocina
6.
ACS Appl Mater Interfaces ; 10(34): 28428-28439, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30048107

RESUMO

Pine pollen offers an all-natural multicavity structure with dual hollow air sacs, providing ample cargo capacity available for compound loading. However, the pollen exhibits reduced permeability because of the presence of a thin natural water-proofing layer of lipidic compounds. Herein, we explore the potential for compound loading within pine pollen and the potential for developing all-natural formulations for targeted delivery to the intestinal tract. Removal of the surface-adhered lipidic compounds is shown to improve surface wetting, expose nanochannel structures in the outer pollen shell and enhance water uptake throughout the whole pollen structure. Optimization of loading parameters enabled effective compound loading within the outer pollen shell sexine structure, with bovine serum albumin (BSA) serving as a representative protein. All-natural oral delivery formulations for targeted intestinal delivery are developed based on tableting of BSA-loaded defatted pine pollen, with the incorporation of xanthan gum as a natural binder, or ionotropically cross-linked sodium alginate as an enteric coating. Looking forward, the large cargo capacity, ease of compound loading, competitive cost, abundant availability, and extensive historical usage as food and medicine make pine pollen an attractive microencapsulant for a wide range of potential applications.


Assuntos
Substâncias Macromoleculares/química , Animais , Preparações de Ação Retardada , Composição de Medicamentos , Pólen , Soroalbumina Bovina
7.
Sci Rep ; 8(1): 6565, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700313

RESUMO

Pollen-based microcapsules such as hollow sporopollenin exine capsules (SECs) have emerged as excellent drug delivery and microencapsulation vehicles. To date, SECs have been extracted primarily from a wide range of natural pollen species possessing largely spherical geometries and uniform surface features. Nonetheless, exploring pollen species with more diverse architectural features could lead to new application possibilities. One promising class of candidates is dandelion pollen grains, which possess architecturally intricate, cage-like microstructures composed of robust sporopollenin biopolymers. Here, we report the successful extraction and macromolecular loading of dandelion SECs. Preservation of SEC morphology and successful removal of proteinaceous materials was evaluated using scanning electron microscopy (SEM), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, elemental CHN analysis, dynamic image particle analysis (DIPA) and confocal laser scanning microscopy (CLSM). Among the tested processing schemes, acidolysis using 85% (v/v) phosphoric acid refluxed at 70 °C for 5 hours yielded an optimal balance of intact particle yield, protein removal, and preservation of cage-like microstructure. For proof-of-concept loading, bovine serum albumin (BSA) was encapsulated within the dandelion SECs with high efficiency (32.23 ± 0.33%). Overall, our findings highlight how hollow microcapsules with diverse architectural features can be readily prepared and utilized from plant-based materials.


Assuntos
Biopolímeros , Carotenoides , Pólen , Cápsulas , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica de Varredura , Pólen/química , Pólen/ultraestrutura , Taraxacum
8.
J Vis Exp ; (117)2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911415

RESUMO

Microcapsules derived from plant-based spores or pollen provide a robust platform for a diverse range of microencapsulation applications. Sporopollenin exine capsules (SECs) are obtained when spores or pollen are processed so as to remove the internal sporoplasmic contents. The resulting hollow microcapsules exhibit a high degree of micromeritic uniformity and retain intricate microstructural features related to the particular plant species. Herein, we demonstrate a streamlined process for the production of SECs from Lycopodium clavatum spores and for the loading of hydrophilic compounds into these SECs. The current SEC isolation procedure has been recently optimized to significantly reduce the processing requirements which are conventionally used in SEC isolation, and to ensure the production of intact microcapsules. Natural L. clavatum spores are defatted with acetone, treated with phosphoric acid, and extensively washed to remove sporoplasmic contents. After acetone defatting, a single processing step using 85% phosphoric acid has been shown to remove all sporoplasmic contents. By limiting the acid processing time to 30 hr, it is possible to isolate clean SECs and avoid SEC fracturing, which has been shown to occur with prolonged processing time. Extensive washing with water, dilute acids, dilute bases, and solvents ensures that all sporoplasmic material and chemical residues are adequately removed. The vacuum loading technique is utilized to load a model protein (Bovine Serum Albumin) as a representative hydrophilic compound. Vacuum loading provides a simple technique to load various compounds without the need for harsh solvents or undesirable chemicals which are often required in other microencapsulation protocols. Based on these isolation and loading protocols, SECs provide a promising material for use in a diverse range of microencapsulation applications, such as, therapeutics, foods, cosmetics, and personal care products.


Assuntos
Cápsulas , Composição de Medicamentos , Pólen , Biopolímeros , Carotenoides , Solventes
9.
Sci Rep ; 6: 28017, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302853

RESUMO

Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.


Assuntos
Biopolímeros/química , Carotenoides/química , Pólen/química , Zea mays/química , Cápsulas , Parede Celular/química , Hidrólise , Microscopia Confocal , Microscopia Eletrônica de Varredura
10.
J Strength Cond Res ; 30(9): 2470-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26840436

RESUMO

Park, JH, Seo, KS, and Lee, S-U. Effect of superimposed electromyostimulation on back extensor strengthening: a pilot study. J Strength Cond Res 30(9): 2470-2475, 2016-Electromyostimulation (EMS) superimposed on voluntary contraction (VC) can increase muscle strength. However, no study has examined the effect of superimposing EMS on back extensor strengthening. The purpose of this study was to determine the effect of superimposed EMS on back extensor strengthening in healthy adults. Twenty healthy men, 20-29 years of age, without low-back pain were recruited. In the EMS group, electrodes were attached to bilateral L2 and L4 paraspinal muscles. Stimulation intensity was set for maximally tolerable intensity. With VC, EMS was superimposed for 10 seconds followed by a 20-second rest period. The same protocol was used in the sham stimulation (SS) group, except that the stimulation intensity was set at the lowest intensity (5 mA). All subjects performed back extension exercise using a Swiss ball, with 10 repetitions per set, 2 sets each day, 5 times a week for 2 weeks. The primary outcome measure was the change in isokinetic strength of the back extensor using an isokinetic dynamometer. Additionally, endurance was measured using the Sorensen test. After 2 weeks of back extension exercise, the peak torque and endurance increased significantly in both groups (p ≤ 0.05). Effect size between the EMS group and the SS group was medium in strength and endurance. However, there was no statistically significant difference between 2 groups. In conclusion, 2 weeks of back extensor strengthening exercise was effective for strength and endurance. Superimposing EMS on back extensor strengthening exercise could provide an additional effect on increasing strength.


Assuntos
Terapia por Estimulação Elétrica , Eletromiografia , Força Muscular/fisiologia , Músculos Paraespinais/fisiologia , Adulto , Terapia por Exercício , Humanos , Masculino , Projetos Piloto , Distribuição Aleatória , Método Simples-Cego , Adulto Jovem
11.
Sci Rep ; 6: 19960, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818918

RESUMO

Sporopollenin exine capsules (SECs) extracted from Lycopodium clavatum spores are an attractive biomaterial possessing a highly robust structure suitable for microencapsulation strategies. Despite several decades of research into SEC extraction methods, the protocols commonly used for L. clavatum still entail processing with both alkaline and acidolysis steps at temperatures up to 180 °C and lasting up to 7 days. Herein, we demonstrate a significantly streamlined processing regimen, which indicates that much lower temperatures and processing durations can be used without alkaline lysis. By employing CHN elemental analysis, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and dynamic image particle analysis (DIPA), the optimum conditions for L. clavatum SEC processing were determined to include 30 hours acidolysis at 70 °C without alkaline lysis. Extending these findings to proof-of-concept encapsulation studies, we further demonstrate that our SECs are able to achieve a loading of 0.170 ± 0.01 g BSA per 1 g SECs by vacuum-assisted loading. Taken together, our streamlined processing method and corresponding characterization of SECs provides important insights for the development of applications including drug delivery, cosmetics, personal care products, and foods.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Carotenoides/química , Composição de Medicamentos , Microscopia Confocal , Extratos Vegetais/química , Proteínas de Plantas/química , Traqueófitas/química
12.
Eur Biophys J ; 44(5): 383-91, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002548

RESUMO

Bamboo salt is a traditional medicine produced from sea salt. It is widely used in Oriental medicine and is an alkalizing agent with reported antiinflammatory, antimicrobial and chemotherapeutic properties. Notwithstanding, linking specific molecular mechanisms with these properties has been challenging to establish in biological systems. In part, this issue may be related to bamboo salt eliciting nonspecific effects on components found within these systems. Herein, we investigated the effects of bamboo salt solution on supported lipid bilayers as a model system to characterize the interaction between lipid membranes and bamboo salt. The atomic composition of unprocessed and processed bamboo salts was first analyzed by mass spectrometry, and we identified several elements that have not been previously reported in other bamboo salt preparations. The alkalinity of hydrated samples was also measured and determined to be between pH 10 and 11 for bamboo salts. The effect of processed bamboo salt solutions on the fluidic properties of a supported lipid bilayer on glass was next investigated by fluorescence recovery after photobleaching (FRAP) analysis. It was demonstrated that, with increasing ionic strength of the bamboo salt solution, the fluidity of a lipid bilayer increased. On the contrary, increasing the ionic strength of near-neutral buffer solutions with sodium chloride salt diminished fluidity. To reconcile these two observations, we identified that solution alkalinity is critical for the effects of bamboo salt on membrane fluidity, as confirmed using three additional commercial bamboo salt preparations. Extended-DLVO model calculations support that the effects of bamboo salt on lipid membranes are due to the alkalinity imparting a stronger hydration force. Collectively, the results of this work demonstrate that processing of bamboo salt strongly affects its atomic composition and that the alkalinity of bamboo salt solutions contributes to its effect on membrane fluidity.


Assuntos
Bicamadas Lipídicas/química , Sais/química , Concentração de Íons de Hidrogênio , Medicina Tradicional Chinesa , Microfluídica , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA