Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 7(1): 84-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15117558

RESUMO

One of the products of nitrogen-derived free radicals, peroxynitrite (ONOO(-)), is formed by the reaction of superoxide anion (O(2)(*-)) with nitric oxide (NO). ONOO(-) can cause damage to proteins and DNA through nitration. In particular, proteins and their constituent amino acids have been proven to be extremely sensitive to ONOO(-). However, the lack of specific endogenous defense enzymes to protect against ONOO(-) has prompted many researchers to search for endogenous scavengers. We previously found 5-hydroxytryptamine (HT), which is an indole derivative (ID), to be an efficient ONOO(-) scavenger. In the present study, the interaction of several other indoles was further investigated: tryptophan (TRP), 5-hydroxyL-tryptophan (HLT), HT, N-acetyl-5-hydroxytryptamine (AHT), 5-methoxyindole-3-acetate (MIA), 5-methoxytryptamine (MT), and melatonin. The ONOO(-) scavenging activity of ID was assayed by measuring the formation of oxidized dihydrorhodamine-123 (DHR-123). The scavenging efficacy was expressed as the IC(50), denoting the concentration of each indole required to cause 50% inhibition of DHR-123 formation. In a separate in vitro study, the protective effect of IDs against ONOO(-)-induced nitration of bovine serum albumin was investigated. Nitration was quantified using an immunoassay with a monoclonal anti-nitrotyrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. The results revealed that the inhibitory activities of indoles were as follows: HLT, IC(50) = 0.73 microM; HT, IC(50) = 1.03 microM; and AHT, IC(50) = 0.98 microM), showing relatively strong activities against ONOO(-). Interestingly, TRP, MIA, MT, and melatonin were less effective. Regarding the protection of albumin by IDs, the data showed that the formation of ONOO(-) was inhibited in a dose-dependent manner. Further probing of the mode of the interaction of indoles revealed that the hydroxyl groups in IDs are required for the enhanced scavenging action. It was concluded that several indole derivatives with hydroxyl groups are effective scavengers against ONOO(-), and that the scavenging efficacy depends on the presence of hydroxyl groups located within the indole ring structure.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Indóis/farmacologia , Ácido Peroxinitroso/farmacologia , Anticorpos Monoclonais/análise , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Indóis/química , Indóis/metabolismo , Concentração Inibidora 50 , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Soroalbumina Bovina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA