Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Med ; 37(5): 1209-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035161

RESUMO

Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F­12) supplemented with 1 ng/ml transforming growth factor-ß, non-essential amino acids and insulin­transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin­like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Tonsila Palatina/citologia , Regeneração , Adipogenia , Animais , Biomarcadores , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Músculo Esquelético/citologia , Osteogênese
2.
mBio ; 7(1): e02232-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838725

RESUMO

UNLABELLED: Treatment of Staphylococcus aureus infections has become increasingly difficult because of the emergence of multidrug-resistant isolates. Development of a vaccine to prevent staphylococcal infections remains a priority. To determine whether clumping factor A (ClfA) is a good target protein for inclusion in a multivalent vaccine, we evaluated its efficacy in a variety of relevant staphylococcal infection models, challenging with different S. aureus strains. ClfA adsorbed to Alhydrogel and mixed with Sigma Adjuvant System was more immunogenic and stimulated a more robust Th17 response than ClfA administered with alum alone. ClfA immunization induced the production of functional antibodies in rabbits and mice that blocked S. aureus binding to fibrinogen and were opsonic for S. aureus strains that produced little or no capsular polysaccharide. Mice immunized with ClfA showed a modest reduction in the bacterial burden recovered from subcutaneous abscesses provoked by S. aureus USA300 strain LAC. In addition, the ClfA vaccine reduced lethality in a sepsis model following challenge with strain Newman, but not ST80. Vaccination with ClfA did not protect against surgical wound infection, renal abscess formation, or bacteremia. Passive immunization with antibodies to ClfA did not protect against staphylococcal bacteremia in mice or catheter-induced endocarditis in rats. Some enhancement of bacteremia was observed by ClfA immunization or passive administration of ClfA antibodies when mice were challenged by the intraperitoneal route. Although rodent models of staphylococcal infection have their limitations, our data do not support the inclusion of ClfA in an S. aureus multivalent vaccine. IMPORTANCE: Antibiotics are often ineffective in eradicating Staphylococcus aureus infections, and thus, a preventative vaccine is sorely needed. Two single-component vaccines and two immunoglobulin preparations failed to meet their designated endpoints in phase III clinical trials. Importantly, recipients of an S. aureus surface protein (iron surface determinant B) vaccine who developed a staphylococcal infection experienced a higher rate of multiorgan failure and mortality than placebo controls, raising safety concerns. Multicomponent S. aureus vaccines have now been generated, and several include surface protein clumping factor A (ClfA). We immunized mice with ClfA and generated a robust T cell response and serum antibodies that were functional in vitro. Nonetheless, ClfA was not protective in a number of relevant animal models of S. aureus infection, and high levels of ClfA antibodies enhanced bacteremia when mice were challenged with community-acquired methicillin-resistant S. aureus strains. Evidence supporting ClfA as a vaccine component is lacking.


Assuntos
Antígenos de Bactérias/imunologia , Coagulase/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Abscesso/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/uso terapêutico , Carga Bacteriana , Avaliação Pré-Clínica de Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Placebos/administração & dosagem , Ratos Sprague-Dawley , Sepse/mortalidade , Vacinas Antiestafilocócicas/administração & dosagem , Análise de Sobrevida , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
3.
Infect Immun ; 81(7): 2554-61, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649092

RESUMO

Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4(+) T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid.


Assuntos
Glicerofosfatos/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Bacteriemia/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Glicerofosfatos/administração & dosagem , Soros Imunes/administração & dosagem , Soros Imunes/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oligodesoxirribonucleotídeos/administração & dosagem , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Toxoide Tetânico/imunologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA