RESUMO
Current treatment for leukemia largely depends on chemotherapy. Despite the progress in treatment efficacy of chemotherapy, a poor outcome consequent upon chemoresistance against conventional anti-cancer drugs still remains to be solved. In this study, we report 5-diphenylacetamido-indirubin-3'-oxime (LDD398) as a novel mitochondria-targeting anti-leukemic agent, which is a derivative of indirubin used in traditional medicine. Treatment with LDD398 resulted in caspase activation, cell death, and growth arrest at G2/M phases in leukemia cells. Interestingly, LDD398 quickly collapsed mitochondrial membrane potential (MMP) within 1 h, accompanied by cytochrome c release into cytosol and severe depletion of cellular ATP. However, the LDD398-induced cellular events was significantly mitigated by blockage of mitochondrial permeability transition pore (MPTP) opening with chemical and genetic modifications, strongly supporting that LDD398 executes its anti-leukemic activity via an inappropriate opening of MPTP and a consequent depletion of ATP. The most meaningful finding was the prominent effectiveness of LDD398 on primary leukemia cells and also on malignant leukemia cells resistant to anticancer drugs. Our results demonstrate that, among a series of indirubin derivatives, LDD398 induces leukemia cell death via a different mode from indirubin or conventional chemotherapeutics, and can be employed as a potent anti-cancer agent in the treatment for newly diagnosed and relapsed leukemia.
Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Leucemia Mieloide/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Oximas/farmacologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade MitocondrialRESUMO
Luteolin is a common flavonoid that exists in medicinal herbs, fruits, and vegetables. Luteolin has biochemical functions including anti-allergy, anti-inflammation, and anti-cancer functions. However, its efficacy and precise mode of action against breast cancer are still under study. To elucidate whether luteolin exhibits an anticancer effect in breast cancer, MCF-7 breast cancer cells were incubated with luteolin, and apoptosis was assessed by observing nuclear morphological changes and by performing cell viability assay, cell cycle analysis, annexin V-FITC/PI double staining, western blotting, RT-PCR, and mitochondrial membrane potential measurements. Luteolin inhibited growth through perturbation of cell cycle progression at the sub-G1 and G1 phases in MCF-7 cells. Furthermore, luteolin enhanced the expression of death receptors, such as DR5, and activated caspase cascades. It enhanced the activities of caspase-8/-9/-3 in a dose-dependent manner, followed by inactivation of PARP. Activation of caspase-8 and caspase-9 induced caspase-3 activity, respectively, in apoptosis of extrinsic and intrinsic pathways. Luteolin also induced mitochondrial membrane potential collapse and cytochrome c release, and increased Bax expression by inhibiting expression of Bcl-2. Taken together, these results suggest that luteolin provokes cell cycle arrest and induces apoptosis by activating the extrinsic and intrinsic pathways.