Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(2): e0193310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29470529

RESUMO

The airway epithelium in human plays a central role as the first line of defense against environmental contaminants. Most respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, and respiratory infections, disturb normal muco-ciliary functions by stimulating the hypersecretion of mucus. Several muco-active agents have been used to treat hypersecretion symptoms in patients. Current muco-active reagents control mucus secretion by modulating either airway inflammation, cholinergic parasympathetic nerve activities or by reducing the viscosity by cleaving crosslinking in mucin and digesting DNAs in mucus. However, none of the current medication regulates mucus secretion by directly targeting airway goblet cells. The major hurdle for screening potential muco-active agents that directly affect the goblet cells, is the unavailability of in vivo model systems suitable for high-throughput screening. In this study, we developed a high-throughput in vivo model system for identifying muco-active reagents using Xenopus laevis embryos. We tested mucus secretion under various conditions and developed a screening strategy to identify potential muco-regulators. Using this novel screening technique, we identified narasin as a potential muco-regulator. Narasin treatment of developing Xenopus embryos significantly reduced mucus secretion. Furthermore, the human lung epithelial cell line, Calu-3, responded similarly to narasin treatment, validating our technique for discovering muco-active reagents.


Assuntos
Embrião não Mamífero/metabolismo , Modelos Biológicos , Adesivos Teciduais/farmacologia , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/citologia , Humanos , Xenopus laevis
2.
Water Sci Technol ; 68(2): 479-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23863444

RESUMO

Biological reuse of spent sulfidic caustic (SSC) originating from oil refineries is a promising method for the petrochemical industry because of low handling cost. SSC typically contains high concentrations of sulfur, with the most dominant sulfur compounds being sulfide (S(2-)). SSC is also characterized by a high pH and elevated alkalinity up to 5-15% by weight. Because of these characteristics, SSC can be used for denitrification of NO3(-)-N in the biological nitrogen removal process as both the electron donor and buffering agent in sulfur-utilizing autotrophic denitrification. In this study, two kinds of SSC (SSC I, SSC II) produced from two petrochemical companies were used for autotrophic denitrification in a field-scale wastewater treatment plant (WWTP). The effluent total nitrogen (TN) concentration in this process was about 10.5 mg/L without any external carbon sources and the nitrification efficiency was low, about 93.0%, because of alkalinity deficiency in the influent. The injection of SSC I, but not SSC II, promoted nitrification efficiency, which was attributed to the difference in the NaOH/S ratio between SSC I and II. SSC was injected based on sulfide concentration of SSC required to denitrify NO3(-)-N in the WWTP. SSC I had higher NaOH/S than SSC II and thus could supply more alkalinity for nitrification than SSC II. On the other hand, additional TN removal of about 9.0% was achieved with the injection of both SSCs. However, denitrification efficiency was not proportionally increased with increasing SSC injection because of NO3(-)-N deficiency in the anoxic tank due to the limited capacity of the recycling pump. For the same reason, sulfate concentration, which is the end product of sulfur-utilizing autotrophic denitrificaiton in the effluent, was also not increased with increasing SSC injection.


Assuntos
Resíduos Industriais , Sulfetos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Processos Autotróficos , Análise da Demanda Biológica de Oxigênio , Cáusticos , Desnitrificação , Elétrons , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Petróleo , Compostos de Amônio Quaternário/metabolismo , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA