RESUMO
BACKGROUND/OBJECTIVES: Weight loss via a mobile application (App) or a paper-based diary (Paper) may confer favorable metabolic and anthropometric changes. SUBJECTS/METHODS: A randomized parallel trial was conducted among 57 adults whose body mass indices (BMIs) were 25 kg/m2 or greater. Participants randomly assigned to either the App group (n = 30) or the Paper group (n = 27) were advised to record their foods and supplements through App or Paper during the 12-week intervention period. Relative changes of anthropometries and biomarker levels were compared between the 2 intervention groups. Untargeted metabolic profiling was identified to discriminate metabolic profiles. RESULTS: Out of the 57 participants, 54 participants completed the trial. Changes in body weight and BMI were not significantly different between the 2 groups (P = 0.11). However, body fat and low-density lipoprotein (LDL)-cholesterol levels increased in the App group but decreased in the Paper group, and the difference was statistically significant (P = 0.03 for body fat and 0.02 for LDL-cholesterol). In the metabolomics analysis, decreases in methylglyoxal and (S)-malate in pyruvate metabolism and phosphatidylcholine (lecithin) in linoleic acid metabolism from pre- to post-intervention were observed in the Paper group. CONCLUSIONS: In the 12-week randomized parallel trial of weight loss through a App or a Paper, we found no significant difference in change in BMI or weight between the App and Paper groups, but improvement in body fatness and LDL-cholesterol levels only in the Paper group under the circumstances with minimal contact by dietitians or health care providers. Trial Registration: Clinical Research Information Service Identifier: KCT0004226.
RESUMO
In the cell extraction_LC-MS method, when cells are incubated with natural product extracts, bioactive compounds selectively bind to extracellular or intracellular targets. The extracts and major compounds (phenylpropanoids and iridoid glycosides) of Scrophularia buergeriana Miquel have been reported to show neuroprotective effects both in vitro and in vivo. In this study, the cell extraction_LC-MS strategy was applied to screen and identify potential neuroprotective compounds from S. buergeriana by using immortalized mouse hippocampal HT22 cells. The results showed that two known compounds from S. buergeriana selectively bound HT22 cells. Additionally, metabolomics analyses were performed using the Mass Profiler Professional and Limma differential expression package of R to identify significant differences between HT22 cells treated with S. buergeriana and untreated cells. The cell extraction approach more accurately reflects in vivo conditions compared with other methods and can be readily used for screening bioactive components from natural products.
Assuntos
Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Scrophularia/química , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular , Cromatografia Líquida/métodos , Hipocampo/efeitos dos fármacos , Iridoides/química , Iridoides/farmacologia , Camundongos , Raízes de Plantas/química , Espectrometria de Massas em Tandem/métodosRESUMO
This study aimed to identify the changes in the metabolomics profile of liver damage caused by alcohol consumption and verify the beneficial effect of Prunus mume Sieb. et Zucc extract (PME) in protection of alcohol-induced injury by attenuating the level of identified metabolites. Mice were treated with PME and saline or untreated once daily for 5 days, followed by alcohol injection. The plasma samples were analyzed using liquid chromatography-mass spectrometry-based high-resolution metabolomics followed by a multivariate statistical analysis using MetaboAnalyst 3.0 to obtain significantly expressed metabolites, using a false discovery rate threshold of q = 0.05. Metabolites were annotated using Metlin database and mapped through Kyoto Encyclopedia of Genes and Genomes (KEGG). Among 4999 total features, 101 features were significant among alcohol- and PME-treated mice groups. All the samples cluster showed a clear separation in the heat map, and the scores plot of orthogonal partial least squares-discriminant analysis (OPLS-DA) model discriminated the three groups. Phosphatidylcholine, Saikosaponin BK1, Ganoderiol I, and N-2-[4-(3,3-dimethylallyloxy) phenyl] ethylcinnamide were among the significant compounds with a low intensity in alcohol group compared to PME group, suggesting that these compounds have a relation in the development of PME's protective effect. The study confirms the hepatoprotective, antioxidant, and anti-inflammatory effects of PME against alcohol-induced liver steatosis, inflammation, and apoptosis.