Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 107(12): 1798-1814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274449

RESUMO

PREMISE: Hybridization plays a key role in introgressive adaptation, speciation, and adaptive radiation as a source of evolutionary innovation. Hybridization is considered common in Arctostaphylos, yet species boundaries are retained in stands containing multiple species. Arctostaphylos contains diploids and tetraploids, and recent phylogenies indicate two clades; we hypothesize combinations of these traits limit or promote hybridization rates. METHODS: We statistically analyzed co-occurrence patterns of species by clade membership and ploidy level from 87 random 0.1 ha plots. We sampled multiple sites to analyze for percent hybridization based on morphology. Finally, phenophases were analyzed by scoring herbarium sheets for a large number of taxa from both clades as well as tetraploids, and second, surveying three field sites over two years for divergence in phenological stages between co-occurring taxa. RESULTS: Most taxa in Arctostaphylos are allopatric relative to other congenerics. When two taxa co-occur, the patterns are a diploid with a tetraploid, or two diploids from different clades. When three taxa co-occur, the pattern is two diploids from different clades and a tetraploid. Field and herbarium data both indicate flowering phenology is displaced between diploids from the two clades; one of the diploid clades and tetraploids overlap considerably. CONCLUSIONS: The two deep clades in Arctostaphylos are genetically distant, with hybrids rare or non-existent when taxa co-occur. Reproductive isolation between clades is enhanced by displaced flowering phenology for co-occurring species. Within clades, taxa appear to have few reproductive barriers other than an allopatric distribution or different ploidy levels.


Assuntos
Arctostaphylos , Isolamento Reprodutivo , Diploide , Hibridização Genética , Simpatria
2.
Appl Environ Microbiol ; 69(7): 3772-6, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839743

RESUMO

Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.


Assuntos
Ecossistema , Fungos/crescimento & desenvolvimento , Micorrizas/efeitos dos fármacos , Pinus/microbiologia , Resíduos/análise , Óxido de Alumínio/farmacologia , Agricultura Florestal/métodos , Fungos/classificação , Dióxido de Silício/farmacologia , Solo/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA