Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316559

RESUMO

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Masculino , Feminino , Camundongos , Animais , Tálamo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Sinapses
2.
J Biol Rhythms ; 35(6): 588-597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877295

RESUMO

Jet lag is a circadian disruption that affects millions of people, resulting, among other things, in extreme sleepiness and memory loss. The hazardous implications of such effects are evident in situations in which focus and attention are required. Remarkably, there is a limited understanding of how jet lag recovery and associated memory loss vary year round under different photoperiods. Here we show, using different cycles representing winter, summer, and equinox in male mice, that jet lag recovery and memory vary significantly with photoperiod changes. We uncover a positive correlation of acute light effects on circadian-driven locomotion (known as negative masking) with photoentrainment speed and memory enhancement during jet lag. Specifically, we show that enhancing or reducing negative masking is correlated with better or worse memory performance, respectively. This study indicates that in addition to timed-light exposure for phase shifting, the negative masking response could also be biologically relevant when designing effective treatments of jet lag.


Assuntos
Ritmo Circadiano/efeitos da radiação , Síndrome do Jet Lag , Locomoção/efeitos da radiação , Memória/efeitos da radiação , Fotoperíodo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA