Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(7): 1543-1559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826694

RESUMO

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.


Assuntos
Eclipta , Pontos Quânticos , Animais , Cricetinae , Extratos Vegetais/farmacologia , Mesocricetus , Antioxidantes/farmacologia , Cirrose Hepática , Carbono/farmacologia
2.
Front Bioeng Biotechnol ; 10: 882100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662840

RESUMO

The understanding of the genesis of life-threatening cancer and its invasion calls for urgent development of novel technologies for real-time observations, early diagnosis, and treatment. Quantum dots (QDs) grabbed the spotlight in oncology owing to their excellent photostability, bright fluorescence, high biocompatibility, good electrical and chemical stability with minimum invasiveness. Recently, carbon QDs (CQDs) have become popular over toxic inorganic QDs in the area of bioimaging, biosensing, and drug delivery. Further, CQDs derived from natural sources like biomolecules and medicinal plants have drawn attention because of their one-pot, low-cost and ease of synthesis, along with remarkable tunable optical properties and biocompatibility. This review introduces the synthesis and properties of CQDs derived from natural sources, focusing on the applicability of CQD-based technologies as nano-theranostics for the diagnosis and treatment of cancer. Furthermore, the current issues and future directions for the transformation of CQDs-based nanotechnologies to clinical applications are highlighted.

3.
J Biomater Appl ; 35(9): 1132-1142, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33377809

RESUMO

The primary goal of this study is to highlight the rheological and mechanical properties of a new blend composed of naturally-derived hydrogel materials- psyllium husk (PH) and gelatin (G) for its potential use in three-dimensional (3D) printing technology. The mixtures were prepared at various weight ratios of 100PH, 75PH + 25G and 50PH + 50G. A suitable selection of the printable ink was made based on the preliminary screening steps of manual filament drop test and layer stacking by 3D printing. Printing of the common features such as hexagon and square grids helped evaluating shape fidelity of the chosen ink. Although 50PH + 50G blend was found meeting most of the criteria for an ideal 3D printable ink, rheological and mechanical characterizations have been performed for all the ratios of polymeric blends. This study documents the correlation between various factors of rheology that should be taken into account while categorizing any biomaterial as a printable ink. Yield stress was measured as 18.59 ± 4.21 Pa, 268.74 ± 13.56 Pa and 109.16 ± 9.85 Pa for 50PH + 50G, 75PH + 25G and 100PH, respectively. Similarly, consistency index (K) and flow index (n) were calculated using the power law equation and found as 49.303 ± 4.17, 530.59 ± 10.92, 291.82 ± 10.53 and 0.275 ± 0.04, 0.05 ± 0.005, 0.284 ± 0.04 for 50PH + 50G, 75PH + 25G and 100PH, respectively. The loss modulus (G″) was observed dominating over storage modulus (G') for 50PH + 50G, that depicts its liquid-like property; whereas storage modulus (G') was found dominating in case of 75PH + 25G and 100PH, indicating their solid-like characteristics. In addition, the loss tangent value (tan δ) of 50PH + 50G was observed exceeding unity (1.05), supporting its plastic behavior, unlike 75PH + 25G (0.5) and 100PH (0.33) whose loss tangent values were estimated less than unity revealing their elastic behavior. Also, 50PH + 50G was found to have the highest mechanical strength amongst the three blends with a Young's modulus of 9.170 ± 0.0881 kPa.


Assuntos
Gelatina/química , Tinta , Psyllium/química , Módulo de Elasticidade , Hidrogéis/química , Polissacarídeos/química , Impressão Tridimensional , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA