Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 295: 118673, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923059

RESUMO

The derivation of sediment quality guideline values (SQGVs) presents significant challenges. Arguably the most important challenge is to conduct toxicity tests using contaminated sediments with physico-chemistry that represents real-world scenarios. We used a novel metal spiking method for an experiment that ultimately aims to derive a uranium SQGV. Two pilot studies were conducted to inform the final spiking design, i.e. percolating a uranyl sulfate solution through natural wetland sediments. An initial pilot study that used extended mixing equilibration phases produced hardened sediments not representative of natural sediments. A subsequent percolation method produced sediment with similar texture to natural sediment and was used as the method for spiking the sediments. The range of total recoverable uranium (TR-U) concentrations achieved was 8-3200 mg/kg. This reflected the concentrations found in natural wetlands and water management ponds found on a uranium mine site and was above natural levels. Dilute-acid extractable uranium (AE-U) concentrations were >80% of total concentrations, indicating that much of the uranium in the spiked sediment was labile and potentially bioavailable. The portion of TR-U extractable as AE-U was similar at the start and end of the 4.5-month field-deployment. Porewater uranium (PW-U) analyses indicated that partition coefficients (Kd) were 2000-20,000 L/kg, and PW-U was greater in post- than pre-field-deployed samples when TR-U was ≤1500 mg/kg, indicating the binding became weaker during the field-deployment period. At higher spiked-U concentrations, the PW-U was lower post-field-deployment. Comparing the physico-chemical data of the spiked sediments with environmental monitoring data from sediments in the vicinity of a uranium mining operation indicated that they were representative of sediments contaminated by mining and that the U-spiked sediments had a clear U concentration gradient. This confirmed the suitability of the spiking procedure for preparing sediments that were suitable for deriving a SQGV for uranium.


Assuntos
Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Projetos Piloto , Urânio/análise , Poluentes Radioativos da Água/análise , Áreas Alagadas
2.
J Environ Radioact ; 189: 14-23, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29549875

RESUMO

Soil microorganisms may respond to metal stress by a shift in the microbial community from metal sensitive to metal resistant microorganisms. We assessed the bacterial community from low (2-20 mg kg-1), medium (200-400 mg kg-1), high (500-900 mg kg-1) and very high (>900 mg kg-1) uranium soils at Ranger Uranium Mine in northern Australia through pyrosequencing. Proteobacteria (28.85%) was the most abundant phylum at these sites, followed by Actinobacteria (9.31%), Acidobacteria (7.33%), Verrucomicrobia (2.11%), Firmicutes (2.02%), Chloroflexi (1.11%), Cyanobacteria (0.93%), Planctomycetes (0.82%), Bacteroidetes (0.46%) and Candidate_division_WS3 (Latescibacteria) (0.21%). However, 46.79% of bacteria were unclassified. Bacteria at low U soils differed from soils with elevated uranium. Bacterial OTUs closely related to Kitasatospora spp., Sphingobacteria spp. and Rhodobium spp. were only present at higher uranium concentrations and the bacterial community also changed with seasonal and temporal changes in soil uranium and physicochemical variables. This study using next generation sequencing in association with environmental variables at a uranium mine has laid a foundation for further studies of soil-microbe-metal interactions which may be useful for developing sustainable management and rehabilitation strategies. Furthermore, bacterial species associated with higher uranium may serve as useful indicators of uranium contamination in the wet-dry tropics.


Assuntos
Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Urânio/análise , Austrália , Conservação dos Recursos Naturais , Recuperação e Remediação Ambiental , Mineração , Filogenia , Proteobactérias , Solo/química
3.
J Environ Radioact ; 149: 121-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26233650

RESUMO

Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg(-1)) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for environmental impact. These findings suggest that U is effectively adsorbed by the soils and thus land application may serve as a useful tool for U management in the wet-dry tropics of northern Australia.


Assuntos
Poluentes Radioativos do Solo/análise , Solo/química , Urânio/análise , Mineração , Northern Territory , Monitoramento de Radiação , Chuva , Estações do Ano , Clima Tropical , Movimentos da Água
4.
J Environ Radioact ; 120: 39-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23416228

RESUMO

As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation.


Assuntos
Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Urânio/farmacologia , Poluentes Radioativos da Água/farmacologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Meios de Cultura , DNA Bacteriano/análise , DNA Fúngico/análise , Fungos/isolamento & purificação , Fungos/fisiologia , Resíduos Industriais , Mineração , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
5.
Int J Environ Health Res ; 16(6): 391-404, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17164166

RESUMO

We examined the relationship between particulate matter (PM) <10 and <2.5 microns in diameter (PM10 and PM2.5) generated by vegetation fires and daily health outcomes in 251 adults and children with asthma over a 7-month period. Data were analysed using generalized estimating equations adjusted for potential environmental confounders, autocorrelation, weekends and holidays. PM10 ranged from 2.6 - 43.3 microg m-3and was significantly associated with onset of asthma symptoms, commencing oral steroid medication, the mean daily symptom count and the mean daily dose of reliever medication. Similar results were found for PM2.5. No associations were found with the more severe outcomes of asthma attacks, increased health care attendances or missed school/work days. These results help fill a gap in the evidence about the population health impacts of lower levels of pollution characteristic of deliberate landscape burning to control fuel loads versus the better documented risks of more intense and severely polluting wildfires.


Assuntos
Poluentes Atmosféricos/toxicidade , Asma/etiologia , Exposição Ambiental/efeitos adversos , Incêndios , Fumaça/efeitos adversos , Adolescente , Adulto , Idoso , Austrália , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Prontuários Médicos , Pessoa de Meia-Idade , Pólen , Índice de Gravidade de Doença , Clima Tropical
6.
Environ Pollut ; 132(2): 307-20, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15312943

RESUMO

Eleocharis dulcis has proliferated in a constructed wetland used to treat uranium mine runoff water, where it rapidly accumulates significant quantities of uranium (U) in its roots and relatively little in its stems. We investigated the mechanism of U uptake and accumulation by E. dulcis using field-sampling techniques and microcosm test work. Results from the microcosm trials and outcomes from statistical tests of field sampled macrophyte, water and sediment indicate that the primary source of U for E. dulcis is the water column. Basipetal translocation of U to the plant's roots was indicated by significant correlations between the U content of stems, taproots and rhizomes and XPS detection of U inside root segments. U sequestering from sediment interstitial water by Fe hydroxides on root surfaces was also evident. No basipetal translocation was evident following the 28-day duration of the microcosm experiments, indicating that it is a longer-term process.


Assuntos
Eleocharis/metabolismo , Mineração , Resíduos Radioativos , Urânio/farmacocinética , Gerenciamento de Resíduos , Biodegradação Ambiental , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA