Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 14(2): 121-134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481552

RESUMO

Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.

2.
J Trace Elem Med Biol ; 81: 127320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913559

RESUMO

BACKGROUND: Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS: In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS: The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION: All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Humanos , Ratos , Masculino , Animais , Vitamina D , Compostos de Manganês , Óxidos/toxicidade , Curcumina/farmacologia , RNA Circular , Ferro , MicroRNAs/genética , Proteína X Associada a bcl-2 , Nanopartículas Metálicas/toxicidade , Sêmen , Antioxidantes , Vitaminas
3.
J Exp Clin Cancer Res ; 41(1): 214, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773731

RESUMO

BACKGROUND: One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. AIM OF REVIEW: The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. KEY SCIENTIFIC CONCEPTS OF REVIEW: The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA