Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057572

RESUMO

Natural compounds have historically had a wide application in nutrition. Recently, a fundamental role has been identified for essential oils extracted from aromatic plants for their nutritional, antimicrobial, and antioxidant properties, and as food preservatives. In the present study, essential oils (EOs) from ten aromatic plants grown in Calabria (Italy), used routinely to impart aroma and taste to food, were evaluated for their antibacterial activity. This activity was investigated against Escherichia coli strain JM109, and its derived antibiotic-resistant cells selected by growing the strain at low concentrations of ampicillin, ciprofloxacin, and gentamicin by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Although all the essential oils showed bactericidal activity, those from Clinopodium nepeta, Origanum vulgare, and Foeniculum vulgare displayed the greatest inhibitory effects on the bacterial growth of all cell lines. It is plausible that the antibacterial activity is mediated by epigenetic modifications since the tested essential oils induce methylation both at adenine and cytosine residues in the genomes of most cell lines. This study contributes to a further characterization of the properties of essential oils by shedding new light on the molecular mechanisms that mediate these properties.


Assuntos
Antibacterianos/farmacologia , Epigênese Genética , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Metilação de DNA , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Foeniculum/química , Foeniculum/genética , Itália , Lamiaceae/química , Lamiaceae/genética , Testes de Sensibilidade Microbiana , Odorantes , Óleos Voláteis/química , Origanum/química , Origanum/genética , Óleos de Plantas/química , Plantas/química , Paladar
2.
Biogerontology ; 20(1): 17-31, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30255223

RESUMO

Biogerontological research indicates nutrition as one of the major determinants of healthy aging, due to the role of nutrients in maintaining the dynamic-homeostasis of the organism. In this frame, the importance of proteins and constitutive amino acids (AAs), and in particular of functional AAs is emerging. The ability to sense and respond to changes in AAs availability is mediated by a complex network of dynamic players, crucial for an efficient regulation of their downstream effects. Here, we reviewed the current knowledge about the involvement of AA sensing mechanisms in aging and age-related diseases, focusing our attention on mTORC1 and AA transporters. In this context it is of note that alterations in AA sensors have been reported to be directly implicated in age-related phenotypes, suggesting that their modulation can represent a possible strategy for modulating (and possibly delaying) aging decline. Furthermore, these alterations may influence the effects of AA supplementation, by influencing the individual answer to AA availability. On the whole, evidences support the hypothesis that the efficiency of components of AA sensing network may have important implications for therapy, and their knowledge may be crucial for programming AA supplementation for contrasting age-related phenotypes, opening new opportunities for therapeutic interventions aimed to promote human health span.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/metabolismo , Homeostase/fisiologia , Fenômenos Fisiológicos da Nutrição , Sistemas de Transporte de Aminoácidos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
3.
Int J Mol Sci ; 14(8): 16443-72, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23965963

RESUMO

Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.


Assuntos
Envelhecimento/genética , Longevidade/genética , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Exercício Físico , Saúde , Humanos , Estilo de Vida , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA